Lexical Relations in Coreference

Yannick Versley project ELKFED

August 15, 2007

Why Lexical and Encyclopedic knowledge?

• Coreference cases with no matching substrings:

instance IBM — the company hypernymy the computer maker — the company alias IBM — Big Blue (quasi-)synonymy Album — CD

- Lexical relations need to be combined with salience / compatibility
- Use ontologies or methods from ontology learning

WordNet vs. Patterns vs. Wikipedia

	WordNet	Patterns	Wikipedia
hypernymy	good	fair	—
(quasi-)synonymy	fair	—	
instance	—	good	good
alias	—	—	good

- Wordnet (and wordnets in general) helps with hypernymy, often also with (quasi-)synonymy, but has poor coverage of proper names
- Use unannotated text and look for patterns that indicate the relation we're interested in
- successful approaches:
 - use the Web as a huge, unannotated corpus
 - exploit a hand-written encyclopedia (e.g. Wikipedia)

Pattern Search on the Web

- Combine multiple patterns
- MI-based threshold: assume the relation if any pattern found and

$$\sum_{\textit{rel}} \log \frac{N_{\text{found}}(\textit{rel}, X, Y)}{N_{\text{exp}}(\textit{rel}, X, Y)} \geq z$$

(z can be used to adjust precision/recall ratio)

 Want binary feature to combine with salience features (Monsanto – Pioneer – the company)

The web pattern feature

- Use two best-performing web patterns
 (X and other Ys, Ys such as X)
- only for NN \rightarrow NE, dist \leq 4 sentences
- avoid queries for very rare items
- Use adjective-noun mapping for prenominals (Iraqi \rightarrow Iraq)

Does it work?

Positive:

- the Chinese government China
- the Internet bookseller Amazon.com
- the sprawling archipelago Indonesia
- the Meryll-Lynch analyst Bernstein

Does it work?

Positive:

- the Chinese government China
- the Internet bookseller Amazon.com
- the sprawling archipelago Indonesia
- the Meryll-Lynch analyst Bernstein

Negative:

- the combined company Compaq
- the Iraqi capital Moscow
- the largest (...) Arab country United States
- the D.C. area Prince George

Does it work?

Positive:

- the Chinese government China
- the Internet bookseller Amazon.com
- the sprawling archipelago Indonesia
- the Meryll-Lynch analyst Bernstein

Negative:

- the combined company Compaq
- the Iraqi capital Moscow
- the largest (...) Arab country United States
- the D.C. area Prince George

Missing:

- the Indonesian businessman James Riady
- the fifth BTG vice president Steve Baldwin
- the Washington rheumatologist Raymond Scalettar

Older results (using SVM and older preprocessing)

	bnews	npaper	nwire
recall	+1.3	+0.5	+0.5
precision	-0.4	-0.1	-0.3
F1	+0.3	+0.2	+0.0

- decision tree classifier does not select this feature
- need to do experiments with recent preprocessing

Downsides of using the Web

- Being dependent on Google/Yahoo/Altavista/MSN Everything stops working if [Search engine] discontinues their SOAP API
- Limited reproducability
- Search engines do things (approximate counts, stemming) that gets in our way
- Essentially fixed, limited rate of doing Web queries cannot scale up if it's too slow
- ... but still better than crawling the Web yourself

Alternatives

- large corpora (BNC, \approx 100M tokens; English Gigaword, \approx 1G tokens)
 - pretty big by most standards
 - pattern approach doesn't work, need to do smart stuff
- even larger corpora (ukWaC, ≈5G tokens)
 - bigger, but still much smaller than the Web
- Google 1T 5-gram data
 - still smaller than the web
 - only *n*-grams, harsh frequency cutoff (\geq 40)

But, with such corpora

- Even with a large number of patterns, we get recall problems
- Higher-recall methods (distributional similarity, association measures, etc.) are not precise enough