Scoring Metrics for IDC, CDC and EDC

David Day ELERFED JHU Workshop July 18, 2007

Entity Tracking Tasks

- IDC: Intra-Document Coreference
 - Link all mentions in a document that co-refer to the same entity (out there in the real world)
 - Corpora: MUC, ACE, ...
- CDC: Cross-Document Coreference
 - Same as above, but include links that span multiple documents
 - Corpora: John Smith, ACE/ELERFED, (ACE/Culotta?, ACE2003/MITRE, ...)
- EDC: Entity Document Categorization
 - For each document D in a set of documents, associate D with all entities that are mentioned at least once within it
 - Corpora: SemEval person biographies, SPOCK
- "Normalization" variants for each of the above
 - Link entity (mentions, documents) to a predefined list of entities

Metrics That Will be Discussed

• IDC

- MUC link-based metric (Vilain, et al, 1995)
- B-CUBED mention-based metric (Baldwin & Bagga)
- ACE value-based metric (Doddington, et al)
- Constrained Entity-Alignment F-measure (Luo, 2005)
- Pairwise Links
- Edit Distance
- CDC
 - Ditto
- EDC
 - Ditto, plus...
 - F-measure
 - ROC curves?

Did You Mention Entity? Shifting Terminology

- <u>mention</u> (or <u>entity mention</u>) =_{df} a phrase referring to an entity in the discourse
 - Earlier authors will sometimes use "entity" to refer to "entity mention" (derived from "named entity expression")
- <u>entity</u> (or <u>equivalence set</u> of entity mentions, <u>mention set</u>, <u>mention cluster</u>)
 - Union of all mentions co-referring to the same entity in the world
 - The thing itself (in the real world)

Desirable Scoring Metric Features

- Discriminability
 - Distinguishes between good and bad system performance levels
 - Ideally, equally across the performance spectrum
- Interpretability
 - Should be relatively "intuitive" to the consumer
- Non-chaotic
 - Small changes in system output should result in relatively small changes in metric value
- Locality?
 - A change in one "part" of system output should not have cascading, non-local effects in the scorer
 - This may be difficult or impossible to achieve, or it may come at the price of some other desirable metric feature
- Community-wide comparability

MUC-6

- Introduced "model-theory" (sets of mentions) to simplify earlier work that operated directly on link structures
- Involves intersecting ref and sys mention sets, resulting sometimes in non-intuitive scores
 - System output containing a single (completely merged) entity mention set generates 100% recall
 - Identical number of mention sets (entities) can result in identical scores, notwithstanding differing cluster membership
- "Link-based" measures # of links required to bring sys mention sets into conformance with ref sets
 - Doesn't account for singleton clusters
 - Undefined for system output containing only singletons
- Intrinsically favors fewer entities
- Tends towards higher scores

MUC-6 Co-Reference Scoring Metric (Vilain, et al, 1995)

- Identify the minimum number of link modifications required to make the system mention set identical to the reference set
- Units counted are link edits

Model-Theoretic Definitions of Recall and Precision

- S =df Set of key mentions
- p(S) =df Partition of S formed by intersecting all system response sets R_i
- Correct links: c(S) = |S| 1
- Missing links: m(S) = |p(S)| 1

- Recall: $c(S) m(S) = \frac{|S| |p(S)|}{|S| 1}$
- Recall_T = $\sum |S| |p(S)|$ $\sum |S| - 1$

MUC-6 Scoring in Action

Α

В

Ref = [A, B, C, D]
Sys = [A, B], [C, D]

$$\frac{4-2}{3} = 0.66$$

$$\frac{\text{Precision}}{4-1} = 1.0$$

 \square

С

$$\frac{\text{F-measure} = 2 * 2/3 * 1}{2/3 + 1} = 0.79$$

MUC-6 Scoring A More Complicated Example

B-Cubed

- "Mention-based"
 - Defined for singleton clusters
- Like MUC, relies on intersection operations between ref and sys mention sets
 - Results in sometimes non-intuitive results
 - Tends towards higher scores
 - Entity clusters being used "more than once" within scoring metric is implicated as the likely cause
 - Greater discriminability than the MUC metric
- Incorporates weighting factor
 - CDC setting: equal weighting for each mention (independent of # of mentions in that cluster)
 - "IR" setting: decreases cost of precision errors

B-Cubed

• Each mention in an equivalence set contributes a fractional amount as a function of the missing mentions

Recall =
$$1 - \frac{1}{|S|} \sum_{j} \sum_{m} \frac{\text{missing}_{j}(S)}{|S|}$$

= $1 - \frac{\sum_{j} \sum_{m} |S_{j}| - |P_{ij}|}{|S|^{2}}$

m = mention

 $Pij = j^{th}$ element of the Partition induced on S_i by mentions in system clusters

B-Cubed Example

Precision =
$$\frac{1}{12}$$
 (m1 + m2 + ... m6 + m7 + ... m8 ...)
= 0.76
Recall = 1.0
F-Measure = 0.865

Pairwise Links

- Compares entity set membership for each pair of mentions in reference and system
 - If RefM-1 and RefM-2 are in the same cluster, then it is a truepositive if SysM-1 and SysM-2 are as well, and a false-negative otherwise; etc.
 - Simple Recall, Precision and F-measure
- Link-based
 - Not defined for singleton mention clusters
 - Does not rely on MUC, B-Cubed style mention set intersection operations
- Tends towards lower scores than either MUC or B-Cubed
 - Greater discriminability(?)
- Perhaps it's link-based restriction could be fixed without otherwise hurting this metric

ACE

- Generates one-to-one mapping between ref and sys entities
 - Penalty for un-mapped entities
 - Incorporates dynamic-programming search for mapping that optimizes overall score
 - Mapped entities must share at least one common mention
- EDR Value = Σ sys-token-val / Σ ref-token-val
 - token-val = entity-value * mentions-value
 - Percentage of possible value
 - Can be negative, if too many spurious entities created
- Cost model assigns different weights to entities and mentions
 - Mention type (NAM, NOM, PRO)
 - Entity class (SPC, UPC, GEN)
 - Entity type (PER, GPE, ORG, LOC, FAC, VEH, WEA)
- Difficult to predict how certain system output changes will effect overall score
 JHU/CLSP/WS07/ELERFED

ACE Entity and Mentions Value Details

ACE Cost Model

Element_Value parameters					
Attribute	W _{err-attribute}	Attribute Value		AttrValue	
Туре	0.50	(all types)		1.00	
Class	0.75	SPC		1.00	
			(not SPC)	0.00	
Subtype	0.90	n/a		n/a	
$W_{E-FA} = 0.75$					
Mentions_Value parameters					
Attribute	W _{Merr-attribute}	Attribute Value		MTypeValue	
Туре	0.90		NAM	1.00	
			NOM	0.50	
			PRO	0.10	
Role	0.90	n/a		n/a	
Style	0.90	n/a		n/a	
Valuation = level-weighted					
W _{M-FA} = 0.75			$W_{M-CR} = 0.00$		
$min_overlap = 0.30$			min_text_match = 0.30		

Table 14 Default parameters for scoring EDR performance

Constrained Entity-Alignment F-Measure Xioqiang Luo, EMNLP 2005

- Like ACE
 - Generates one-to-one mapping
 - Enables independent entity-similarity cost function to be incorporated
 - Search generates optimized score
- Different from ACE
 - Two simpler "entity similarity" cost functions proposed (mentionbased vs. entity-based)
 - Mention-based: RefMentions ∩ SysMentions
 - Entity-based: mention F-measure between Ref and Sys
 - Recall and precision computed as a function of ref-to-ref similarity and sys-to-sys similarity, respectively
 - Penalty for over-generation of clusters incorporated directly into precision score
 - Symmetric with respect to Ref and Sys

Examples

System	B-cube		CEAF			
response	R	Р	ϕ_3 -R	ϕ_3 -P	ϕ_4 -R	ϕ_4 -P
(c)	1.0	0.375	0.417	0.417	0.196	0.588
(d)	0.25	1.0	0.250	0.250	0.444	0.111

Comparing CEAF against MUC and ACE on Real Data

Penalty	#sys-ent	MUC-F	ϕ_3 -CEAF
-0.6	561	.851	0.750
-0.8	538	.854	0.756
-0.9	529	.853	0.753
-1	515	.853	0.753
-1.1	506	.856	0.764
-1.2	483	.857	0.768
-1.4	448	.863	0.761
-1.5	425	.862	0.749
-1.6	411	.864	0.740
-1.7	403	.865	0.741
-10	113	.902	0.445

Penalty	#sys-ent	ACE-value(%)	ϕ_3 -CEAF
0.6	1221	88.5	0.726
0.4	1172	89.1	0.749
0.2	1145	89.4	0.755
0	1105	89.7	0.766
-0.2	1050	89.7	0.775
-0.4	1015	89.7	0.780
-0.6	990	89.5	0.782
-0.8	930	88.6	0.794
-1	891	86.9	0.780
-1.2	865	86.7	0.778
-1.4	834	85.6	0.769
-1.6	790	83.8	0.761

CDC: Entity Detection & Recognition vs. Entity Normalization

- Entity Normalization enables straightforward Recall, Precision and Fmeasure to be computed trivially
 - No requirements for mapping
 - No need to weight contribution of mentions
 - May want to discount document-level mentions vs. document-level entities

Some Considerations

- Comparability to community performance measures – MUC, ACE
- Intrinsic scoring metric features
 - Simple, easily interpreted: Pairwise, B-cubed
 - Richly detailed scoring reports: ACE
- Engineering issues
 - Computational costs?
 - (Re-)implementation costs for workshop?
- Optimizing scoring metrics
 - Do these hide "decisions" being made by a system far more powerful than putative end users?

Baseline Scores

	IDC-ACE Pub	IDC-ACE ELERFED	CDC-ACE ELERFED	EDC- SemEval Pub	EDC SemEval ELERFED	EDC ACE ELERFED
MUC						
B-Cubed						
Pairwise						
ACE Value						
CEAF						

Detritus

Reference

]]

