
Statistical Machine Translation
by Parsing

final presentation

August 18, 2005

Andrea Burbank (Stanford), Marine Carpuat (HKUST),
Stephen Clark (Oxford), Markus Dreyer (JHU), Pamela Fox (USC),

Declan Groves (DCU), Keith Hall (JHU), Mary Hearne (DCU),
Dan Melamed (NYU), Yihai Shen (HKUST), Andy Way (DCU),

Ben Wellington (NYU), Dekai Wu (HKUST)

Statistical Machine Translation
by Parsing

The Team
Andrea Burbank (Stanford), Marine Carpuat (HKUST),

Stephen Clark (Oxford), Markus Dreyer (JHU), Pamela Fox (USC), Declan Groves
(DCU), Keith Hall (JHU), Mary Hearne (DCU),

Dan Melamed (NYU), Yihai Shen (HKUST), Andy Way (DCU),
Ben Wellington (NYU), Dekai Wu (HKUST)

The Supporting Team
Noah Smith, Josh Rosenblum, Svetlana Stenchikova, Wei Wang,

Fred Jelinek, Sue Porterfield, Laura Graham, Eiwe Lingefors,
Thomas Tornsey-Weir, Kristo Kirov, Victoria Fossum, Ali Argyle,

Mona Diab, Nizar Habash, Chris Pike, Dan Bikel, Frank Keller,
Abhishek Arun, Charles Schafer

Motivation for SMT by Parsing
State-of-the-art SMT often produces word
salad.

Bolting trees onto FST-based (IBM-style)
SMT doesn't seem to help.

SMT is very compute-intensive (slow).

SMT systems getting very complicated,
making them hard to study and improve.

The Engineering Motivation for Syntax
Need fewer parameters to express ordering
preferences.

E.g.: Arabic adjectives always follow their nouns.

Fewer parameters are easier to learn, given
limited training data and/or computing resources.
Less training data needed to reach a given level
of accuracy.
Better accuracy on fixed amount of data.
All parameters interact during learning, so better
estimates for syntactic parameters lead to better
estimates for other types.

But isn’t syntax too expensive?
Myth: Translation models involving syntax
are computationally too expensive to train.
Fact: Finite-state models are more
expensive! (more parameters)
Of course, bolting syntax on top of a finite
state model incurs the combined cost of
both. (So we avoided that.)
In machine learning with structured
inference (most of NLP), better models
should train faster.

Motivations for our team’s work
short-term

lower the entry barriers to the field
demonstrate feasibility of SMT by Parsing

short- and long-term
answer fundamental scientific questions
educate the next generation
accelerate progress in MT

long-term
help to reunite MT with NLP

following precedent
SMT @ WS’99

• EGYPT toolkit
– incl. GIZA
– no decoder

• Cairo
• N. Smith & M. Jahr

• feasibility of SMT

SMT @ WS’05
• GenPar toolkit

– incl. “sandboxes”
– no sep. decoder required

• MultiTreeViewer
• A. Burbank, P. Fox, and

other educational
achievements

• feasibility of SMT by
Parsing

more precedent
SMT @ WS’99

• 1 week of data prep
• 3 weeks of software

engineering
• 1 week of system

integration
• 1 week of research

SMT @ WS’05
• 1 week of data prep
• 3 weeks of software

engineering
• 1 week of system

integration
• 1 week of research

Outline of the rest of the talk
data preparation
the GenPar toolkit

motivations
key algorithms
core system design
extensions
sandboxes: robust system integration

feasibility of SMT by Parsing
2 proposals for follow-on research
an empirical study

data preparation
1. obtain corpora (not easy)
2. tokenize
3. lemmatize
4. re-tokenize (re-lemmatize)
5. adapt text format to external taggers and

parsers (Diab, Bikel)
6. tag & parse
7. partition into training/dev/test sets
8. filter out sentence pairs rejected by parser
9. induce word-to-word translation model (TM)
10. filter out sentence pairs rejected by TM
11. install improved taggers & parsers
12. repeat from step 2

The GenPar ToolKit
a toolkit for generalized parsing
integrated end-to-end system for translation by
parsing, which is easy to obtain, understand,
use, study, modify, extend, and improve
relatively simple yet general architecture
intuitive, flexible, object-oriented design
3 kinds of documentation: user, design, system
dynamically configurable
easily extendable
freely downloadable!

http://www.clsp.jhu.edu/ws2005/groups/statistical/

http://www.clsp.jhu.edu/ws2005/groups/statistical

The GenPar toolkit: outline
main challenge
key algorithm
core system design
design extensions
robust system integration

DFD for SMT by Parsing

Challenges of complex systems
Hard to study

Difficult to do controlled experiments.
Difficult to assign credit/blame for changes in
performance.

Hard to modify/extend
Research prototypes are often not well-
designed, with many features hard-coded.

Hard to replicate
Most papers on syntax-driven SMT compare
their results only to systems with no syntax.

Hard for the community to make progress

The core algorithms are all generalized parsers.

Lowering entry barriers:
Reducing system complexity

How to do everything by parsing?
multitrees
multiparsing
alignment by parsing
translation by parsing
later: MT evaluation by parsing

What’s a multitree?

PAS
pasudu

MIT
moy

WASH
wash

D
the

DISH
dishes

N

NP

S

N

V

NP

S

MultiTreeViewer (MTV)

More perspectives on multitrees

More perspectives on multitrees

More perspectives on multitrees

More perspectives on multitrees

head-switching multitrees

head-switching multitrees

How does a multiparser work?
Grammar:

Input:

PAS
pasudu

MIT
moy

WASH
wash

D
the

DISH
dishes

0 1 2 3
0

1

2

N DISH

N PAS

NP D N

NP N

S NP V

S V NP

Multiparsing (1/4)

PAS
pasudu

MIT
moy

WASH
wash

D
the

DISH
dishes

0 1 2 3
0

1

2

N DISH

N PAS

Multiparsing (1/4)

PAS
pasudu

MIT
moy

WASH
wash

D
the

DISH
dishes

N DISH

N PAS

0 1 2 3
0

1

2

N

N

Multiparsing (2/4)

PAS
pasudu

WASH
wash

D
the

DISH
dishes

V WASH

V MIT

MIT
moy

0 1 2 3
0

1

2

N

N

Multiparsing (2/4)

PAS
pasudu

MIT
moy

WASH
wash

D
the

DISH
dishes

0 1 2 3
0

1

2

N

NV

V

V WASH

V MIT

NP D N

NP N

Multiparsing (3/4)

PAS
pasudu

MIT
moy

WASH
wash

D
the

DISH
dishes

0 1 2 3
0

1

2

N

NV

V

Multiparsing (3/4)

PAS
pasudu

MIT
moy

WASH
wash

D
the

DISH
dishes

0 1 2 3
0

1

2

N

NV

NP

NP

V

NP D N

NP N

Multiparsing (4/4)

PAS
pasudu

MIT
moy

WASH
wash

DISH
dishes

D
the

N

NP

N

V

NP

S NP V

S V NP

0 1 2 3
0

1

2

V

Multiparsing (4/4)

PAS
pasudu

MIT
moy

WASH
wash

DISH
dishes

D
the

N

NP

N

V

NP

0 1 2 3
0

1

2

V

S

S

S NP V

S V NP

Alignment

PAS
pasudu

MIT
moy

WASH
wash

D
the

DISH
dishes

N

NP

S

N

V

NP

S

word-to-word model:
dishes = pasudu

wash = moy
the = ∅

Translation (1)

0 1

V

V

WASH

0 1
MIT

Translation (2, 3, 4)

D

1 2

DISH

2 3
PAS

N DISH

N PAS

N

2 3

N

1 3

NP

NP

S

0 3

S

0 1

V

V

S NP V

S V NP

NP D N

NP N

Result of translation is a multitree

PAS
pasudu

MIT
moy

WASH
wash

DISH
dishes

D
the

N

NP

N

V

NP

0 1 2 3
0

1

2

V

Result of translation is a multitree?
But we want a string!
Trivial: Output string can be read off the
multitree leaves by a trivial postprocess.
Information about relative order of
constituents is inferred as part of the
parsing process.
No separate “decoder” required.

How to do everything by parsing
single inference algorithm
varying constraints:

production rules
pre-existing monolingual tree(s)
input string
etc.

easier said than done…

GenPar design goals
1. powerful and configurable

can instantiate many kinds of SMTbyP systems
abstract classes interact in a fixed but generic way
concrete variants chosen at runtime via config files:

parsing algorithm
type of grammar
pruning strategy
etc., etc., etc.

2. easy to understand
3. easy to extend

new functionality added by subclassing abstract
components -- surprisingly flexible!
OO design facilitates concurrent development of
multiple components

X Y : X knows about Y
X Y : X contains YThe core of the design

Generic agenda-based parsing algorithm
Input: logic L (with grammar inside), pruning

strategy P, sentence tuple, parsing goal, etc.

1. Item I = null;
2. repeat
3. if (not agenda.empty()) then
4. I = agenda.pop();
5. set<Item> E = L.expand(G, I) // initialize if I is null
6. for (J ∈ E) do
7. if (not P(J)) // check if pruning
8. agenda.push(J);
9. until (agenda.empty() or parsing goal reached)

Output: L.result() // multitree(s) with cost(s)

Key abstraction: Parsing Logics
nondeterministic parsing algorithm
specifies which items can compose with
which other items into which other items
does not fully specify the order of
compositions -- a separate search strategy
can do that
search strategy expressed by agenda’s
comparator
degree of nondeterminism can vary from a
lot to none

Key abstraction: Parsing Logics
partially based on Shieber et al. (1995)
E.g., CKY algorithm:

logic = bottom up
search strategy = shortest span first

Different item comparator gives different
parsing algorithms with same logic:

best first
left-to-right
random

The comparator is a relatively tiny piece of
code, easy to write.

Key Abstraction:
Grammar encapsulation
• grammars evaluate

partial parses
– getPossibleCons(item1,

item2): decide if two
items can compose

– getCost(inference):
compute inference cost

• can be based on
production rules

• can be based on some
completely different
system of constraints

Grammar

Weighted
Multitext
Grammar
(WMTG)

Bilexical
Probabilistic

MTG
Two-Tree-
Constrained

MTG

your
grammar

here

your
grammar

here

Extensions
New variants are easy to implement,
sometimes surprisingly easy!
new logics for:

faster translation
multiparsing with no agenda

new grammars for
alignment with one constraining tree
“phrases”

New functionality: faster translation
abstract

implements expand() with
genScans() and
genComposes()

extends expand() with
genLoads()

overrides genLoads() to
filter loads based on
input sentence

Logic

Bottom-Up
Logic

Bottom-Up
Translation Logic

Faster Bottom-Up
Translation Logic

Effects of a single method override

language
pair

inferences
under naïve

logic

inferences
under

faster logic

reduction
factor

English to
English

998 646 1.55

French to
English

1092 974 1.12

Arabic to
English 2341 996 2.35

inference counts for translation of 10 sentences using tiny grammar

On larger grammar: reduced by 2 orders of magnitude.

New functionality:
translation without agenda

• overrides expand() to
implement
deterministic CKY
translation algorithm

• after translation,
expand() returns the
empty set, so agenda
never used

• still uses superclass’s
methods for genScans(),
genLoads(),
genComposes()

Bottom-Up
Translation Logic

CKY Translator

Generic agenda-based parsing algorithm
Input: logic L (with grammar inside), pruning

strategy P, sentence tuple, parsing goal, etc.

1. Item I = null;
2. repeat
3. if (not agenda.empty()) then
4. I = agenda.pop();
5. set<Item> E = L.expand(G, I) // initialize if I is null
6. for (J ∈ E) do
7. if (not P(J)) // check if pruning
8. agenda.push(J);
9. until (agenda.empty() or parsing goal reached)

Output: L.result() // multitree(s) with cost(s)

New functionality:
alignment with one constraining tree

• overrides
getPossibleCons() to
consult only one
constraining tree

• completely
transparent to logic

Grammar

Weighted
Multitext
Grammar
(WMTG)

Bilexical
PMTGTwo-Tree-

Constrained
MTG

One-Tree-
Constrained

MTG

assume we have a phrase list for one or both
languages
easy case: contiguous n-grams
(treegrams a bit trickier, but not much)
e.g., “kick the bucket”, “there is”, “account for”
solution:

treat each phrase as a possible constituent, with unique
nonterminal label
attach to or identify with lowest subsuming node in
constraining tree during alignment
slash sibling nonterminal labels

Possible new functionality: “phrases”

use trie for efficient phrase recognition during
scanning of the input
span of scanned word can be wider than 1
no other changes for retraining and translation
all changes encapsulated in grammar

Possible new functionality: “phrases”

X

A Y

a ZB

b c

X

AB Y/B

ab Z

c

result =
E.g., phrase = “ab”
constraining tree =

System integration

Lowering entry barriers: Sandboxes
A sandbox is…

a directory structure where a single command will
run the end-to-end system on a toy-sized corpus

simply go to base directory and type “make”

a validation suite for developers
after each change of code, make sure nothing broke

an educational tool for SMT
seeing some data run through the pipeline is a good way
to get familiar with the system

a blueprint for experiments
change config files, and run your own data through it

toolkit includes sandboxes for 3 language pairs

Feasibility of SMT by Parsing
parameter estimation in GenPar
highlights of configuration used
the data
automatic evaluation method
preliminary results

parameter estimation in GenPar
So far, very primitive: Viterbi estimation.

GPEM

Grammar

WMTG

LearnableWMTG

LearnableGrammar
+increment(multitree)

+normalize()

Parser

Machine learning toolkits can be integrated.

configuration used for experiments
Logic: Bottom Up
Search Strategy: Best First
Grammar:

for alignment: tree-constrained MTG
for retraining & translation:

bilexical (headed) probabilistic MTG
fine-grained generative process with strong
independence assumptions but no smoothing

N.B: first-cut model and training method

data used for experiments
English tagger (Ratnaparkhi) & parser (Bikel)
trained on PTB
French to English

subset of EuroParl corpus (Koehn’02)
pretokenized, except for some missing periods
stop-lists off the web
train/dev set from standard training partition

Arabic to English
tagger from Diab@HLT’04
Bikel parser, trained on part of Arabic treebank (ATB)
training data: A/E parallel news corpus
test data: NIST MTEval’03 test set

MT evaluation: measuring text overlap

To avoid double-counting, the overlap is a maximum matching.

Rewards for longer matches

Reward diagonal runs more than linearly in their length.
E.g., run weight is the area of its minimum enclosing square.

MT evaluation: the standard measures
maximum match size (MMS) = maximum
combined area of non-overlapping squares
take square root to linearize
normalize by lengths of the candidate (C) and
reference (R) to get a score between 0 and 1:

P = precision = MMS / |C|
R = recall = MMS / |R|
F-measure = harmonic mean of P and R
≈ the fraction of the grid covered by matches

measure not developed here, but the software is
part of toolkit

preliminary evidence for empirical feasibility

approx speed (without much optimization)
alignment, retraining: about 1 sentence pair
per second
translation: 1 sentence per minute with no LM

learning curve (Declan)

New functionality:
Target language models

A proposal for follow-on research
(Markus)

MT Evaluation by Parsing

A proposal for follow-on research
(Ben)

The ITG Hypothesis for Arabic/English

(Dekai)

Take-home messages
Findings:

Multiparsing can be fast.
Typical models fit in the memory of typical machines.
Our first-cut system is comparable in accuracy to an off-
the-shelf FST-based SMT system.

On the only corpus on which we could make a direct
comparison, which was small.

Much low-hanging fruit ready to be picked, to improve
speed and accuracy.

Conjectures:
All processes are easily parallelizable at the sentence
level.
Processing typical bitext sizes is no more difficult than
for FST-based SMT.

Take-home software
• On our team’s homepage

http://www.clsp.jhu.edu/ws2005/groups/statistical
• MTV

• GenPar
– sign onto genpar-announce@cs.nyu.edu to be notified of updates

http://www.clsp.jhu.edu/ws2005/groups/statistical
mailto:genpar-announce@cs.nyu.edu

(near) future directions
target language models
MT evaluation by parsing
phrases
other grammar formalisms (CCG, TSG, …)
smoothing methods for generative
transduction grammars
machine learning beyond EM
more sophisticated pruning
beyond single-best translations

Review
short-term

lower the entry barriers to the field
demonstrate feasibility of SMT by Parsing

short- and long-term
answer fundamental scientific questions
educate the next generation
accelerate progress in MT

long-term
help to reunite MT with NLP

Helping to reunite MT with NLP
Recently, MT research has been borrowing
more from machine learning than from
NLP.
Strong connection between MT and
parsing should make both subfields pay
more attention to each other.
Then, MT can improve by parsing.
Parsing can claim another application.
A Good Thing, long term.

Looking forward

SMT SMT by
Parsing

first proposed 1988 1995

publicly available toolkit +11 years =
1999

+10 years =
2005

dominant approach +3 years =
2002 ??

	Statistical Machine Translation�by Parsing
	Statistical Machine Translation�by Parsing
	Motivation for SMT by Parsing
	The Engineering Motivation for Syntax
	But isn’t syntax too expensive?
	Motivations for our team’s work
	following precedent
	more precedent
	Outline of the rest of the talk
	data preparation
	The GenPar ToolKit
	The GenPar toolkit: outline
	DFD for SMT by Parsing
	Challenges of complex systems
	Lowering entry barriers: �Reducing system complexity	
	How to do everything by parsing?
	What’s a multitree?
	MultiTreeViewer (MTV)
	More perspectives on multitrees
	More perspectives on multitrees
	More perspectives on multitrees
	More perspectives on multitrees
	head-switching multitrees
	head-switching multitrees
	How does a multiparser work?
	Multiparsing (1/4)
	Multiparsing (1/4)
	Multiparsing (2/4)
	Multiparsing (2/4)
	Multiparsing (3/4)
	Multiparsing (3/4)
	Multiparsing (4/4)
	Multiparsing (4/4)
	Alignment
	Translation (1)
	Translation (2, 3, 4)
	Result of translation is a multitree
	Result of translation is a multitree?
	How to do everything by parsing
	GenPar design goals
	The core of the design
	Generic agenda-based parsing algorithm
	Key abstraction: Parsing Logics
	Key abstraction: Parsing Logics
	Key Abstraction: �Grammar encapsulation
	Extensions
	New functionality: faster translation
	Effects of a single method override
	New functionality: �translation without agenda
	Generic agenda-based parsing algorithm
	New functionality: �alignment with one constraining tree
	Possible new functionality: “phrases”
	Possible new functionality: “phrases”
	System integration
	Lowering entry barriers: Sandboxes
	Feasibility of SMT by Parsing
	parameter estimation in GenPar
	configuration used for experiments
	data used for experiments
	MT evaluation: measuring text overlap
	Rewards for longer matches
	MT evaluation: the standard measures
	preliminary evidence for empirical feasibility
	New functionality: �Target language models
	MT Evaluation by Parsing
	The ITG Hypothesis for Arabic/English
	Take-home messages
	Take-home software
	(near) future directions
	Review
	Helping to reunite MT with NLP
	Looking forward

