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Motivation for SMT by Parsing
State-of-the-art SMT often produces word 
salad.

Bolting trees onto FST-based (IBM-style) 
SMT doesn't seem to help.

SMT is very compute-intensive (slow).

SMT systems getting very complicated, 
making them hard to study and improve.



The Engineering Motivation for Syntax
Need fewer parameters to express ordering 
preferences.

E.g.: Arabic adjectives always follow their nouns.

Fewer parameters are easier to learn, given 
limited training data and/or computing resources.
Less training data needed to reach a given level 
of accuracy.
Better accuracy on fixed amount of data.
All parameters interact during learning, so better 
estimates for syntactic parameters lead to better 
estimates for other types.



But isn’t syntax too expensive?
Myth: Translation models involving syntax 
are computationally too expensive to train.
Fact: Finite-state models are more
expensive!  (more parameters)
Of course, bolting syntax on top of a finite 
state model incurs the combined cost of 
both. (So we avoided that.)
In machine learning with structured 
inference (most of NLP), better models 
should train faster.



Motivations for our team’s work
short-term

lower the entry barriers to the field
demonstrate feasibility of SMT by Parsing

short- and long-term
answer fundamental scientific questions
educate the next generation
accelerate progress in MT

long-term
help to reunite MT with NLP



following precedent
SMT @ WS’99

• EGYPT toolkit
– incl. GIZA
– no decoder

• Cairo
• N. Smith & M. Jahr

• feasibility of SMT

SMT @ WS’05
• GenPar toolkit

– incl. “sandboxes”
– no sep. decoder required

• MultiTreeViewer
• A. Burbank, P. Fox, and 

other educational 
achievements

• feasibility of SMT by 
Parsing



more precedent
SMT @ WS’99

• 1 week of data prep
• 3 weeks of software 

engineering
• 1 week of system 

integration
• 1 week of research

SMT @ WS’05
• 1 week of data prep
• 3 weeks of software 

engineering
• 1 week of system 

integration
• 1 week of research



Outline of the rest of the talk
data preparation
the GenPar toolkit

motivations
key algorithms
core system design
extensions
sandboxes: robust system integration

feasibility of SMT by Parsing
2 proposals for follow-on research
an empirical study



data preparation
1. obtain corpora (not easy)
2. tokenize
3. lemmatize
4. re-tokenize (re-lemmatize)
5. adapt text format to external taggers and 

parsers (Diab, Bikel)
6. tag & parse
7. partition into training/dev/test sets
8. filter out sentence pairs rejected by parser
9. induce word-to-word translation model (TM)
10. filter out sentence pairs rejected by TM
11. install improved taggers & parsers
12. repeat from step 2



The GenPar ToolKit
a toolkit for generalized parsing
integrated end-to-end system for translation by 
parsing, which is easy to obtain, understand, 
use, study, modify, extend, and improve
relatively simple yet general architecture
intuitive, flexible, object-oriented design
3 kinds of documentation: user, design, system
dynamically configurable
easily extendable
freely downloadable!

http://www.clsp.jhu.edu/ws2005/groups/statistical/

http://www.clsp.jhu.edu/ws2005/groups/statistical


The GenPar toolkit: outline
main challenge
key algorithm
core system design
design extensions
robust system integration



DFD for SMT by Parsing



Challenges of complex systems
Hard to study

Difficult to do controlled experiments.
Difficult to assign credit/blame for changes in 
performance.

Hard to modify/extend
Research prototypes are often not well-
designed, with many features hard-coded.

Hard to replicate
Most papers on syntax-driven SMT compare 
their results only to systems with no syntax.

Hard for the community to make progress



The core algorithms are all generalized parsers.

Lowering entry barriers:  
Reducing system complexity



How to do everything by parsing?
multitrees
multiparsing
alignment by parsing
translation by parsing
later: MT evaluation by parsing



What’s a multitree?
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MultiTreeViewer (MTV)



More perspectives on multitrees
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More perspectives on multitrees



head-switching multitrees



head-switching multitrees



How does a multiparser work?
Grammar:

Input:
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Multiparsing (1/4)
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Multiparsing (1/4)
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Multiparsing (2/4)
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Multiparsing (2/4)
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Multiparsing (3/4)
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Multiparsing (4/4)
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Multiparsing (4/4)
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Alignment

PAS
pasudu

MIT
moy

WASH
wash

D
the

DISH
dishes

N

NP

S

N

V

NP

S

word-to-word model:
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wash = moy
the = ∅



Translation (1)
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Translation (2, 3, 4)

D

1         2

DISH

2       3
PAS

N           DISH

N           PAS

N

2 3

N

1 3

NP

NP

S

0 3

S

0 1

V

V

S             NP  V

S             V   NP

NP         D  N

NP         N



Result of translation is a multitree
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Result of translation is a multitree?
But we want a string!
Trivial: Output string can be read off the 
multitree leaves by a trivial postprocess.
Information about relative order of 
constituents is inferred as part of the 
parsing process.
No separate “decoder” required.



How to do everything by parsing
single inference algorithm
varying constraints:

production rules
pre-existing monolingual tree(s)
input string
etc.

easier said than done…



GenPar design goals
1. powerful and configurable

can instantiate many kinds of SMTbyP systems
abstract classes interact in a fixed but generic way
concrete variants chosen at runtime via config files:

parsing algorithm
type of grammar 
pruning strategy
etc., etc., etc.

2. easy to understand
3. easy to extend

new functionality added by subclassing abstract 
components -- surprisingly flexible!
OO design facilitates concurrent development of 
multiple components



X          Y :  X knows about Y
X          Y :  X contains YThe core of the design



Generic agenda-based parsing algorithm
Input: logic L (with grammar inside), pruning 

strategy P, sentence tuple, parsing goal, etc.

1. Item I = null;
2. repeat
3. if (not agenda.empty()) then
4. I = agenda.pop();
5. set<Item> E = L.expand(G, I)   // initialize if I is null
6. for (J ∈ E) do
7. if (not P(J))                      // check if pruning
8. agenda.push(J);
9. until (agenda.empty() or parsing goal reached)

Output: L.result()         // multitree(s) with cost(s)



Key abstraction: Parsing Logics
nondeterministic parsing algorithm
specifies which items can compose with 
which other items into which other items
does not fully specify the order of 
compositions -- a separate search strategy 
can do that
search strategy expressed by agenda’s 
comparator
degree of nondeterminism can vary from a 
lot to none



Key abstraction: Parsing Logics
partially based on Shieber et al. (1995)
E.g., CKY algorithm:

logic = bottom up 
search strategy = shortest span first

Different item comparator gives different 
parsing algorithms with same logic:

best first
left-to-right
random

The comparator is a relatively tiny piece of 
code, easy to write.



Key Abstraction: 
Grammar encapsulation
• grammars evaluate 

partial parses
– getPossibleCons(item1, 

item2): decide if two 
items can compose

– getCost(inference): 
compute inference cost

• can be based on 
production rules

• can be based on some 
completely different 
system of constraints

Grammar

Weighted 
Multitext 
Grammar
(WMTG)

Bilexical 
Probabilistic 

MTG
Two-Tree-
Constrained 

MTG

your 
grammar 

here

your 
grammar 

here



Extensions
New variants are easy to implement, 
sometimes surprisingly easy!
new logics for:

faster translation
multiparsing with no agenda

new grammars for
alignment with one constraining tree
“phrases”



New functionality: faster translation
abstract

implements expand() with 
genScans() and 
genComposes()

extends expand() with 
genLoads()

overrides genLoads() to 
filter loads based on 
input sentence

Logic

Bottom-Up 
Logic

Bottom-Up 
Translation Logic

Faster Bottom-Up 
Translation Logic



Effects of a single method override

language 
pair

inferences 
under naïve 

logic

inferences 
under 

faster logic

reduction 
factor

English to 
English

998 646 1.55

French to 
English

1092 974 1.12

Arabic to 
English 2341 996 2.35

inference counts for translation of 10 sentences using tiny grammar

On larger grammar: reduced by 2 orders of magnitude.



New functionality: 
translation without agenda

• overrides expand() to 
implement  
deterministic CKY 
translation algorithm

• after translation, 
expand() returns the 
empty set, so agenda 
never used

• still uses superclass’s 
methods for genScans(), 
genLoads(), 
genComposes()

Bottom-Up 
Translation Logic

CKY Translator



Generic agenda-based parsing algorithm
Input: logic L (with grammar inside), pruning 

strategy P, sentence tuple, parsing goal, etc.

1. Item I = null;
2. repeat
3. if (not agenda.empty()) then
4. I = agenda.pop();
5. set<Item> E = L.expand(G, I)   // initialize if I is null
6. for (J ∈ E) do
7. if (not P(J))                      // check if pruning
8. agenda.push(J);
9. until (agenda.empty() or parsing goal reached)

Output: L.result()         // multitree(s) with cost(s)



New functionality: 
alignment with one constraining tree

• overrides 
getPossibleCons() to 
consult only one 
constraining tree

• completely 
transparent to logic

Grammar

Weighted 
Multitext 
Grammar
(WMTG)

Bilexical
PMTGTwo-Tree-

Constrained 
MTG

One-Tree-
Constrained 

MTG



assume we have a phrase list for one or both 
languages
easy case: contiguous n-grams
(treegrams a bit trickier, but not much)
e.g., “kick the bucket”, “there is”, “account for”
solution:

treat each phrase as a possible constituent, with unique 
nonterminal label
attach to or identify with lowest subsuming node in 
constraining tree during alignment
slash sibling nonterminal labels

Possible new functionality: “phrases”



use trie for efficient phrase recognition during 
scanning of the input
span of scanned word can be wider than 1
no other changes for retraining and translation
all changes encapsulated in grammar

Possible new functionality: “phrases”

X

A Y

a ZB

b c

X

AB Y/B

ab Z

c

result =
E.g., phrase = “ab”
constraining tree =



System integration



Lowering entry barriers: Sandboxes
A sandbox is…

a directory structure where a single command will 
run the end-to-end system on a toy-sized corpus

simply go to base directory and type “make”

a validation suite for developers
after each change of code, make sure nothing broke

an educational tool for SMT
seeing some data run through the pipeline is a good way 
to get familiar with the system

a blueprint for experiments
change config files, and run your own data through it

toolkit includes sandboxes for 3 language pairs



Feasibility of SMT by Parsing
parameter estimation in GenPar
highlights of configuration used
the data
automatic evaluation method
preliminary results



parameter estimation in GenPar
So far, very primitive: Viterbi estimation.

GPEM

Grammar

WMTG

LearnableWMTG

LearnableGrammar
+increment(multitree)

+normalize()

Parser

Machine learning toolkits can be integrated.



configuration used for experiments
Logic: Bottom Up
Search Strategy: Best First
Grammar:

for alignment: tree-constrained MTG
for retraining & translation: 

bilexical (headed) probabilistic MTG
fine-grained generative process with strong 
independence assumptions but no smoothing

N.B: first-cut model and training method



data used for experiments
English tagger (Ratnaparkhi) & parser (Bikel) 
trained on PTB
French to English

subset of EuroParl corpus (Koehn’02)
pretokenized, except for some missing periods
stop-lists off the web
train/dev set from standard training partition

Arabic to English
tagger from Diab@HLT’04
Bikel parser, trained on part of Arabic treebank (ATB)
training data: A/E parallel news corpus
test data: NIST MTEval’03 test set



MT evaluation: measuring text overlap

To avoid double-counting, the overlap is a maximum matching.



Rewards for longer matches

Reward diagonal runs more than linearly in their length.
E.g., run weight is the area of its minimum enclosing square.



MT evaluation: the standard measures
maximum match size (MMS) = maximum 
combined area of non-overlapping squares
take square root to linearize
normalize by lengths of the candidate (C) and 
reference (R) to get a score between 0 and 1:

P = precision = MMS / |C|
R = recall = MMS / |R|
F-measure = harmonic mean of P and R
≈ the fraction of the grid covered by matches

measure not developed here, but the software is 
part of toolkit



preliminary evidence for empirical feasibility

approx speed (without much optimization)
alignment, retraining: about 1 sentence pair 
per second 
translation: 1 sentence per minute with no LM

learning curve (Declan)



New functionality: 
Target language models

A proposal for follow-on research
(Markus)



MT Evaluation by Parsing

A proposal for follow-on research
(Ben)



The ITG Hypothesis for Arabic/English

(Dekai)



Take-home messages
Findings:

Multiparsing can be fast.
Typical models fit in the memory of typical machines.
Our first-cut system is comparable in accuracy to an off-
the-shelf FST-based SMT system.

On the only corpus on which we could make a direct 
comparison, which was small.

Much low-hanging fruit ready to be picked, to improve 
speed and accuracy.

Conjectures:
All processes are easily parallelizable at the sentence 
level.
Processing typical bitext sizes is no more difficult than 
for FST-based SMT.



Take-home software
• On our team’s homepage

http://www.clsp.jhu.edu/ws2005/groups/statistical
• MTV

• GenPar
– sign onto genpar-announce@cs.nyu.edu to be notified of updates

http://www.clsp.jhu.edu/ws2005/groups/statistical
mailto:genpar-announce@cs.nyu.edu


(near) future directions
target language models
MT evaluation by parsing
phrases
other grammar formalisms (CCG, TSG, …)
smoothing methods for generative 
transduction grammars
machine learning beyond EM
more sophisticated pruning 
beyond single-best translations



Review
short-term

lower the entry barriers to the field
demonstrate feasibility of SMT by Parsing

short- and long-term
answer fundamental scientific questions
educate the next generation
accelerate progress in MT

long-term
help to reunite MT with NLP



Helping to reunite MT with NLP
Recently, MT research has been borrowing 
more from machine learning than from 
NLP.
Strong connection between MT and 
parsing should make both subfields pay 
more attention to each other.
Then, MT can improve by parsing.
Parsing can claim another application.
A Good Thing, long term.



Looking forward

SMT SMT by 
Parsing

first proposed 1988 1995

publicly available toolkit +11 years = 
1999

+10 years = 
2005

dominant approach +3 years = 
2002 ??
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