بسحراله الرحمن الرحيصر

Parsing Arabic Dialects

Progress Report (- Week 2-)

Overview

- Baselines
- Infrastructure
- Sentence Transduction
- Treebank Transduction
- Grammar Transduction
- Issues

Parsing Arabic Dialects:

The Problem

- Dialect - - MSA -

Baselines: Unsupervised, MSA Parsers on LEV

NOTE: not everything is always comparable

Method	Sents	Recall	Precision	F
Unsupervised	<10	62	38	47
Chiang	<200	36	42	39
Treegram (Sima'an)	all			
Bikel	<100	41	45	43

Infrastructure: Corpora

- Created dev/train/test sets for the MSA, LATB data sets
- Prepared the data in MSA Gigaword and the other Levantine data sets for language modeling
- Tree graphing
- Mapping to linguistically motivated dependency structure

Infrastructure: Lexical, Computational Resources

- LEV-MSA dictionary building continues
- Prepared noisy dictionary that uses English as bridge language
- Simulated Levantine morphology through extraction of analyses from LATB
- Re-vamped Diab's Arabic SVMtools to deal with the MSA and Levantine data
- Implemented tree transformation engine and treebank search engine (better than tgrep...)

Infrastructure: Morphology

- Developing a structure for a multidialectal lexicon of Arabic along the lines of the multilingual lexicon proposal of Cahill & Gazdar 1995
- Lexical entries are a triple

 Root, Semantics, MorphClass>, where each of these portions of the triple can be inherited from a specification that ranges from covering a single dialect to covering all dialects.

Infrastructure: Unannotated Corpora

- Goal: Expand Lexicon to improve word to word translation coverage
- Method 1: Similar to Rapp, 1999
 - Find words that have similar co-occurrences with known words in seed dictionary (size of seed dictionary will affect performance)
- Method 2: Similar to Diab & Finch, 2000
 - Pick a subset of words from each language to compare co-occurence vectors with all words in the subset

Proposed Solution 1:

Dialect Sentence Transduction

Sentence Transduction

- Completed the implementation end-to-end for single sentences
 - Overgenerative translation
 - No permutions currently
 - LM pruning
 - o Integration with parser
 - o "Bread crumbing"
 - o Simple projection of MSA parse unto LEV sentence

Proposed Solution 2:

MSA Treebank Transduction

Proposed Solution 3:

MSA Grammar Transduction

Grammar Transduction

 Use hand-written rules and tree transformation engine to transform MSA grammar into dialect grammar

- Issue: no dialect treebank
- Idea: use probabilities estimated from MSA treebank

Grammar Transduction: Parsing by Translation

MSA and dialect grammars form synchronous grammar

- Idea: use synchronous grammar to translate dialect into MSA
- Find the best translation into MSA and take the dialect tree produced along the way

Grammar Transduction Picture

Grammar Transduction: Synchronous Grammars

- Stochastic synchronous grammar
 - o Rules in grammar consist of (r, r', ◊)
 - > r: rule in MSA grammar
 - > r': rule in dialect grammar
 - > 0: bijective relation between nonterminals in RHSs of r, r'
 - o $P(X \to w, X' \to w' \mid X \Diamond X')$ where $X \to w$ is MSA and $X' \to w'$ dialect
- Approximate:

o
$$P(X \to \omega, X' \to \omega' \mid X \Diamond X')$$

≈ $P(X' \to \omega' \mid X \to \omega) \times P(X \to \omega \mid X)$

Grammar Transduction: Estimating Parameters

- Reminiscent of Hidden Markov Model:
 - o Transitions are the MSA grammar derivations
 - Emissions are the translation
- Extract grammar and estimate transition probabilities from MSA data
- Create synchronous grammar using handwritten tree transduction rules, estimate initial "emission" probabilities by guessing
- Re-estimate either or both by EM or Gibbs sampling on unannotated dialect data

Grammar/Treebank Transduction: Where We Are

- Synchronous TAG implementation: done
- EM of emission probabilities for synchronous TAG: done
- EM training for dialect PCFGs is ready (using Lopar): tested on a toy example
- LM rescoring on MSA or dialect side: not started yet

Gibbs Sampling

- Basic idea: get a joint distribution by repeatedly sampling conditional distributions
- Joint distribution: over values of parameters and data, both observed and unobserved; observed data fixed
- Much like EM, but advantage: distribution over possible values of parameters instead of just a single parameter value; can spot multiple modes

Gibbs Sampling: Dialect Parsing

- Application to parsing dialect:
 - o observed data: dialect sentences, MSA trees
 - hidden data: dialect trees
 - o parameters: emission probabilities (and perhaps language model parameters as well)
- Best fit with treebank transfer method: get dialect treebank as a part of the sampling process

Gibbs Sampling: Possible Issues

- Disadvantages:
 - May be computationally too expensive
 - Large parameter space
 - May have no clear global optimum (in which case EM would be fine)
- Potential exploration: only sample for a subset of parameters

Plans for Coming Week

- Baselining for all three approaches
- Sentence transduction:
 - More complex permutations
 - Efficient implementation
- Treebank, grammar transduction
 - More tree transformation rules
 - Implement and test EM
 - Small trial for Gibbs sampling

Issues

- How do we deal with speech aspects?
 Parentheticals, edits, etc marked in treebank
- Evaluation issues