Parsing Arabic Dialects

JHU Summer Workshop Final Presentation August 17, 2005

Global Overview

- Introduction (Owen Rambow)
- Student Presentation: Safi Shareef
- Student Presentation: Vincent Lacey
- Lexicon
- Part-of-Speech Tagging
- Parsing
 - Introduction and Baselines
 - Sentence Transduction
 - Treebank Transduction
 - Grammar Transduction
- Conclusion

Team

- Senior Members
 - David Chiang
 - Mona Diab
 - Nizar Habash
 - Rebecca Hwa
 - Owen Rambow
 - Khalil Sima'an
- Grad Students
 - Roger Levy
 - Carol Nichols

U of Maryland

Columbia

Columbia

U of Pittsburgh

Columbia (team leader)

U of Amsterdam

Stanford

U of Pittsburgh

Team (ctd)

Undergrads

Vincent Lacey

Safiullah Shareef

Externals

Srinivas Bangalore,

Martin Jansche

Stuart Shieber

Otakar Smrz

Richard Sproat

Bill Young

Georgia Tech

Johns Hopkins

AT&T Labs -- Research

Columbia

Harvard

Charles U, Prague

U of Illinois at UC

CASL/U of Maryland

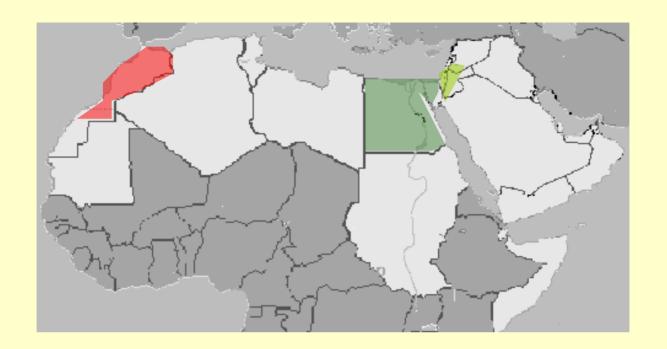
Contact: Owen Rambow, rambow@cs.columbia.edu

Local Overview: Introduction

- Team
- Problem: Why Parse Arabic Dialects?
- Methodology
- Data Preparation
- Preview of Remainder of Presentation:
 - Lexicon
 - Part-of-Speech Tagging
 - Parsing

The Arabic Language

- Written language: Modern Standard Arabic (MSA)
- MSA also spoken in scripted contexts (news broadcasts, speeches)
- Spoken language: dialects



lam ja∫tari nizār ţawilatan ζadīdatan
didn't buy Nizar table new
nizār ma∫tarā∫ ţarabēza gidīda
nizār ma∫tarā∫ ţawile ζdīde
nizār ma∫rā∫ mida ζdīda
vilo almud ma∫rā∫ mida
Valor almud mizar mizar mizar ma∫rā∫ mida
Valor almud mizar mi

Factors Affecting Dialect Usage

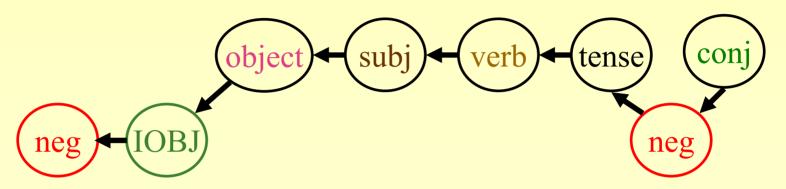
- Geography (continuum)
- City vs village
- Bedouin vs sedentary
- Religion, gender, ...
- ⇒ Multidimensional continuum of dialects

Lexical Variation

Arabic Dialects vary widely lexically

English	table	cat	of	(I) want	there is	there isn't
MSA	Tawila	qiTTa	idafa	uridu	yūjadu	la yujadu
Moroccan	mida	qeTTa	dyāl	bgit	kayn	ma kaynš
Egyptian	Tarabeza	'oTTa	bita3	3 a wez	fi	mafiš
Syrian	Tawle	bisse	taba3	biddi	fi	ma fi
Iraqi	mez	bazz u na	māl	'arid	aku	maku

Morphological Variation Verb Morphology



MSA ولم تكتبوها له walam taktubūhā lahu wa+lam taktubū+hā la+hu and+not_past write_you+it for+him

EGY وماکتبتو هالوش wimakatabtuhalū∫ wi+ma+katab+tu+ha+lū+∫ and+not+wrote+you+it+for_him+not

And you didn't write it for him

Dialect Syntax: Word Order

Verb Subject Object
کتب الاو لاد الاشعار

wrote.masc the-boys the-poems (MSA)

Subject Verb Object الاو لاد كتبو الاشعار

the-boys wrote.masc.pl_I the-poems (LEV, EGY)

	VS	V	SV	Full	Full
	Order		Order	agreement in VSO	agreement in SVO
MSA	35%	30%	35%	no	yes
Dialects	11%	62%	27%	yes	yes

Dialect Syntax: Noun Phrases

- Possessives
 - Idafa construction
 - Noun1 Noun2
 - אוש וערני king Jordan the king of Jordan / Jordan's king
 - Dialects have an additional common construct
 - Noun1 <particle> Noun2
 - LEV: الملك تبع الاردن the-king belonging-to Jordan
 - <particle> differs widely among dialects
- Pre/post-modifying demonstrative article
 - MSA: هذا الرجل this the-man this man
 - EGY: الراجل ده the-man this this man

Code Switching: Al-Jazeera Talk Show

MSA and Dialect mixing in formal spoken situations

LEV

MSA

لا أنا ما بعتقد لأنه عملية اللي عم بيعارضوا اليوم تمديد للرئيس لحود هم

اللي طالبوا بالتمديد للرئيس الهراوي وبالتالي موضوع منه موضوع مبدئي على الأرض أنا بحترم أنه يكون في نظرة ديمقر اطية للأمور وأنه يكون في احترام للعبة الديمقر اطية وأن يكون في ممارسة ديمقر اطية وبعتقد إنه الكل في لبنان أو أكثرية ساحقة في لبنان تريد هذا الموضوع، بس بدي يرجع لحظة على موضوع إنجازات العهد يعني نعم نحكي عن إنجازات العهد لكن هل النظام في لبنان نظام رئاسي النظام في لبنان من بعد الطائف ليس نظام رئاسي وبالنالي السلطة هي عمليا بيد الحكومة مجتمعة والرئيس لحود أثبت خلال ممارسته الأخيرة بأنه لما بيكون في شخص مسؤول في منصب معين وأنا عشت هذا الموضوع شخصيا بممارستي في موضوع الاتصالات لما بياخد مواقف صالحة ضمن خطاب ومبادئ خطاب القسم هو إلى جانبه إنما مش مطلوب من رئيس جمهورية هو يكون رئيس السلطة التنفيذية عليه التوجيه عليه إبداء رئيس السلطة التنفيذية عليه التوجيه عليه إبداء الملاحظات عليه القول ما هو خطأ وما هو صح عليه تثمير جهود الوطنية الشاملة كي يظل في مصالحة وطنية كي يظل في توافق ما بين المسلم والمسيحي في لبنان يحتضن أبناء هذا البلد ما يترك المسار يروح باتجاه الخطأ نعم يظل في توافق ما بين المسلم والمسيحي في لبنان يحتضن أبناء هذا البلد ما يترك المسار يروح باتجاه الخطأ نعم خلال الأربع سنوات بالممارسة الحكومية أني الترمت فيها ولما المترمنا بهذا الموضوع كان الرئيس لحود إلى جنبنا خيل الموضوع، أما الموضوع، أما الموضوع الديمقراطي أنا بتفهم تماما هذا هالوجهة النظر بس ما ممكن نقول إنه الدستور أو عديله هو أو إمكانية فتح إعادة انتخاب ديمقراطي ضمن المجلس والتصويت إلى ما هنالك لرئيس جمهورية بولاية تعديله هو أو إمكانية فت إعادة النتخاب ديمقراطي ضمن المجلس والتصويت إلى ما هنالك لرئيس جمهورية بولاية في الني قناعتي في هذا الموضوع.

Why Study Arabic Dialects?

- There are no native speakers of MSA
- Almost no native speakers of Arabic are able to sustain continuous spontaneous production of spoken MSA
- This affects all spoken genres which are not fully scripted: conversational telephone, talk shows, interviews, etc.
- Dialects also in use in new written media (newsgroups, blogs, etc)
- Arabic NLP components for many applications need to account for dialects!

Local Overview: Introduction

- Team
- Problem: Why Parse Arabic Dialects?
- Methodology
- Data Preparation
- Preview of Remainder of Presentation:
 - Lexicon
 - Part-of-Speech Tagging
 - Parsing

Possible Approaches

- Annotate corpora ("Brill Approach")
- Leverage existing MSA resources our APPROACH
 - Difference MSA/dialect not enormous: can leverage
 - We have linguistic studies of dialects ("scholarseeded learning")
 - Too many dialects: even with dialects annotated, still need leveraging for other dialects
 - Code switching: don't want to annotate corpora with code-switching

Goal of this Work

- Goal of this work: show that leveraging MSA resources for dialects is a viable scientific and engineering option
- Specifically: show that using lexical and structural knowledge of dialects can be used for dialect parsing
- Question of cost (\$) is an accounting question

Out of Scope

- Tokenization
- Morphelegisalanalwægrægrægrægrægialects morphelegisaldisambiguatasks/:
- Speech Effextsn&ulhalak\$
 - □ Repairs and redita ulh AlakS
 - Disfluencies binqulhA lak\$
 - Parentheticals
 - Speech sounds
 Issue of ASR interface
 - Easy

In Scope

- Deriving bidialectal lexica
- Part-of-speech tagging
- Parsing

Local Overview: Introduction

- Team
- Problem: Why Parse Arabic Dialects?
- Methodology
- Data Preparation
- Preview of Remainder of Presentation:
 - Lexicon
 - Part-of-Speech Tagging
 - Parsing

Arabic Dialects: Computational Resources

- Transcribed speech/transcript corpora
 - Levantine (LDC), Egyptian (LDC), Iraqi, Gulf, ...
- Very little other unannotated text
 - Online: Blogs, newsgroups
 - Paper: Novels, plays, soap opera scripts, ...
- Treebanks
 - Levantine, LDC for this workshop with no funding
 - INTENDED FOR EVALUATION ONLY
- Morphological resources
 - Columbia University Arabic Dialect Project: MAGEAD: Pan-Arab Morphology, only MSA so far (ACL workshop 2005)
 - Buckwalter morphological analyzer for Levantine (LDC, under development, available as black box)

MSA: Computational Resources

- Huge unannoted corpora,
- MSA treebank (LDC)
- Lexicons,
- Morphological analyzers (Buckwalter 2002)
- Taggers (Diab et al 2004)
- Chunkers (Diab et al 2004)
- Parsers (Bikel, Sima'an)
- MT system, ASR systems, ...

Data Preparation

- 20,000 words of Levantine (Jordanian) syntactically annotated by LDC
- Removed speech effects, leaving 16,000 words (4,000 sentences)
- Divided into development and test data
- Note: NO TRAINING DATA
- Use morphological analysis of LEV corpus as a standin for true morphological analyzer
- Use MSA treebank from LDC (300,000 words) for training and development
- Contributors: Mona Diab, Nizar Habash

Issues in Test Set

- Annotated Levantine corpus used only for development, testing (no training)
- Corpus developed rapidly at LDC (Maamouri, Bies, Buckwalter), for free (thanks!)
- Issues in corpus:
 - 5% words mis-transcribed
 - Some inconsistent annotations

Local Overview: Introduction

- Team
- Problem: Why Parse Arabic Dialects?
- Methodology
- Data Preparation
- Preview of Remainder of Presentation:
 - Lexicon
 - Part-of-Speech Tagging
 - Parsing

Bidialectal Lexicons

Problem:

- No existing bidialectal lexicons (even on paper)
- No existing parallel corpora MSA-dialect

Solution:

- Use human-written lexicons
- Use comparable corpora
- Estimate translation probabilities

Part-of-Speech Tagging

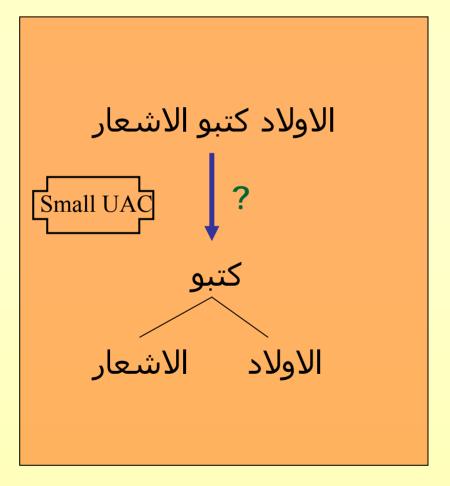
- Problem:
 - No POS-annotated corpus for dialect
- Solution 1: adapt existing MSA resources
 - Minimal linguistic knowledge
 - MSA-dialect lexicon
- Solution 2: find new types of models

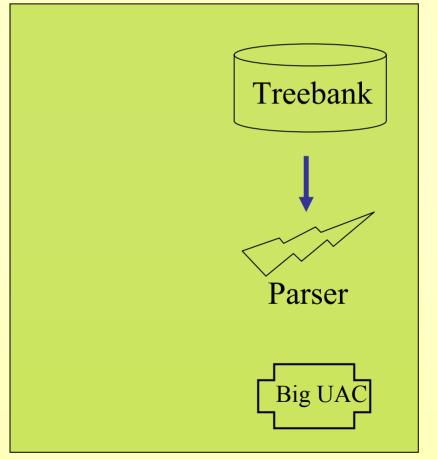
Local Overview: Introduction

- Team
- Problem: Why Parse Arabic Dialects?
- Methodology
- Preview of Remainder of Presentation:
 - Lexicon
 - Part-of-Speech Tagging
 - Parsing

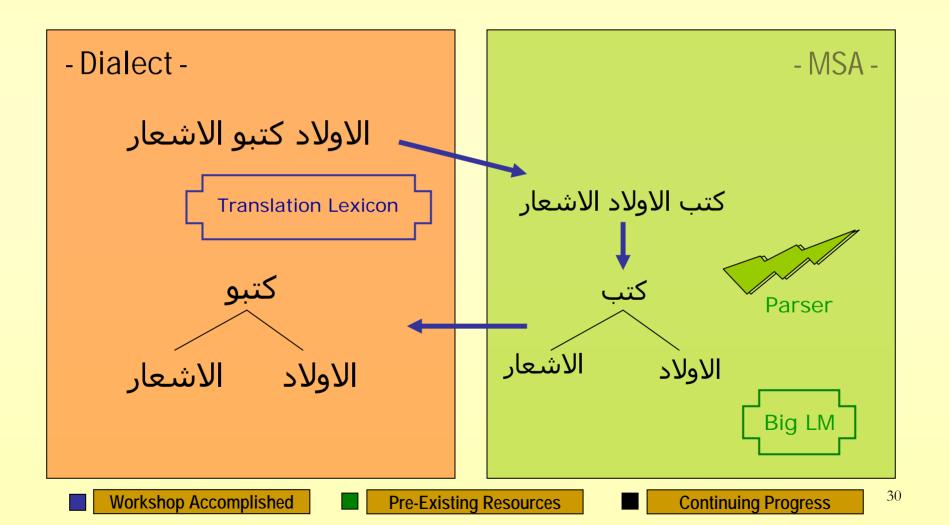
Parsing Arabic Dialects: The Problem

- Dialect - - MSA -

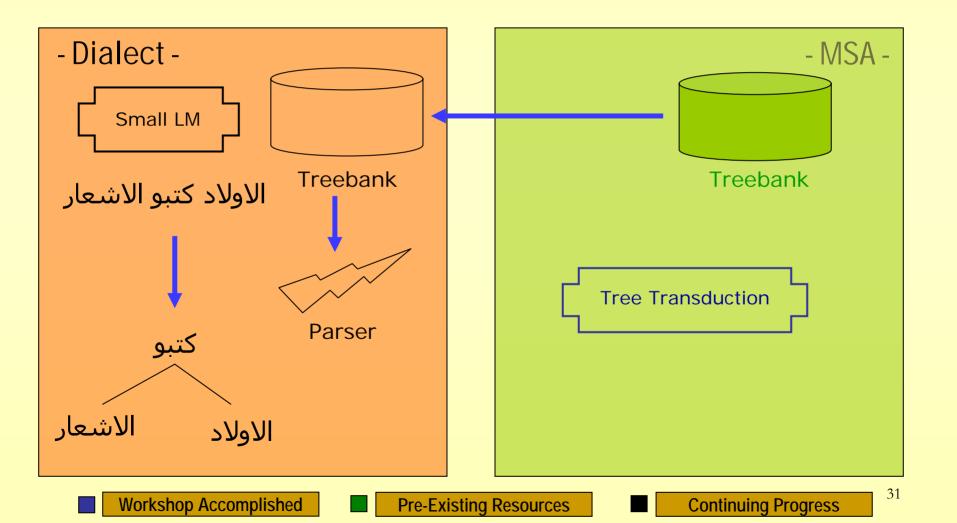




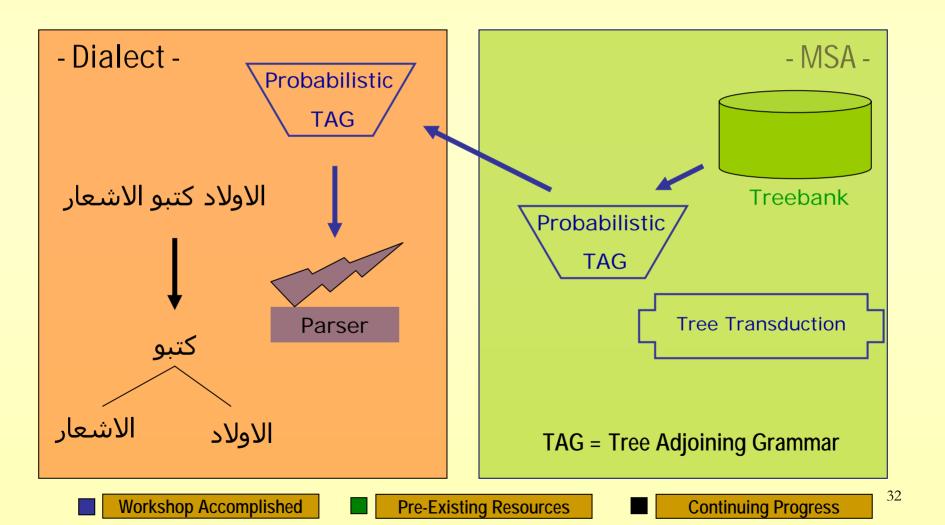
Parsing Solution 1: Dialect Sentence Transduction



Parsing Solution 2: MSA Treebank Transduction



Parsing Solution 3: MSA Grammar Transduction



What We Have Shown

- Baseline: MSA-trained parser on Levantine
 - Baseline: 53.1%
- This work: a small amount of effort improves
 - Small lexicon, 2 syntactic rules: 60.2%
- Comparison: a large amount of effort for treebanking improves more
 - Annotate 11,000 words: 69.3%

Summary: Introduction

- Continuum of dialects
- People communicate spontaneously in Arabic dialects, not in MSA
- So far no computational work on dialects, almost no resources (not even much unannotated text)
- Do not want ad-hoc solution for each dialect
- Want to quickly develop dialect parsers without need for annontation
- Exploit knowledge of differences MSA/dialects to be able to

Global Overview

- Introduction
- Student Presentation: Safi Shareef
- Student Presentation: Vincent Lacey
- Lexicon
- Part-of-Speech Tagging
- Parsing
 - Introduction and Baselines
 - Sentence Transduction
 - Treebank Transduction
 - Grammar Transduction
- Conclusion

Arabic Dialect Text Classification

Student Project Proposal

Advisor: Nizar Habash

Student: Safi Shareef

Columbia University, NY Johns Hopkins University, MD

Background

- Arabic Diglossia
 - Standard Arabic: formal, primarily written
 - Arabic Dialects: informal, primarily spoken
 - Differences in phonology, morphology, syntax, lexicon
 - Regional Dialect differences (Iraqi, Egyptian, Levantine, etc.)
- Spectrum of modern Arabic language forms
 - Hints toward content



Code Switching

MSA & Dialect mixing within the same text

MSA

LEV

لا أنا ما بعنقد لأنه عملية اللي عم بيعار ضوا اليوم تمديد للرئيس لحود هم اللي طالبوا بالتمديد للرئيس الهراوي وبالتالي موضوع منه موضوع مبدئي على الأرض أنا بحترم أنه يكون في نظرة ديمقر اطية للأمور وأنه يكون في احترام للعبة الديمقر اطية وأن يكون في ممارسة ديمقر اطية وبعتقد إنه الكل في لبنان أو أكثرية ساحقة في لبنان تريد هذا الموضوع، بس بدى يرجع لحظة على موضوع إنجازات العهد يعني نعم نحكي عن إنجازات العهد لكن هل النظام في لبنان نظام رئاسي النظام في لبنان من بعد الطائف ليس نظام رئاسي وبالتالي السلطة هي عمليا بيد الحكومة مجتمعة والرئيس لحود أثبت خلال ممارسته الأخيرة بأنه لما بيكون في شخص مسؤول في منصب معين وأنا عشت هذا الموضوع شخصيا بممارستي في موضوع الاتصالات لما بياخد مواقف صالحة ضمن خطاب ومبادئ خطاب القسم هو إلى جانبه إنما مش مطلوب من رئيس جمهورية هو يكون رئيس السلطة التنفيذية لأنه منه بقي في لبنان ما بعد إتفاق الطائف رئيس السلطة التنفيذية عليه التوجيه عليه إبداء الملاحظات عليه القول ما هو خطأ وما هو صح عليه تثمير جهود الوطنية الشاملة كي يظل في مصالحة وطنية كي يظل في توافق ما بين المسلم والمسيحي في لبنان يحتضن أبناء هذا البلد ما يترك المسار يروح باتجاه الخطأ نعم إنما خطاب القسم كان موضوع مبادئ طرحت هو ملتزم فيها اللي مشيوا معه وآمنوا فيها التزموا فيها أنا أثبت خلال الأربع سنوات بالممارسة الحكومية أنى التزمت فيها ولما التزمنا بهذا الموضوع كان الرئيس لحود إلى جنبنا في هذا الموضوع، أما الموضوع الديمقراطي أنا بتفهم تماما هذا هالوجهة النظر بس ما ممكن نقول إنه الدستور أو تعديله هو أو إمكانية فتح إعادة انتخاب ديمقر اطي ضمن المجلس والتصويت إلى ما هنالك لرئيس جمهورية بو لاية ثانية هو مسح هيئة في جو هر الديمقر اطية هذا بالأقل يعني قناعتي في هذا الموضوع.

Computational Issues

- Modern Standard Arabic
 - Plethora of resources/applications
 - Textual Corpora
 - Treebanks
 - Morphological Analyzers/Generators
- Arabic Dialects
 - Limited or no resources
 - Many dialects with varying degrees of support

Dialect Detection (Identification)

Motivation

- Create more consistent and robust language models
 - Machine translation
 - e.g. Translate into IRQ in colloquial form
- Application matching
 - What lexicon, analyzer, translation system to use?
 - Dialect ID as additional feature to different applications
 - Information retrieval, information extraction, etc.

Types of Dialect Classification

- Document-based vs. Word-based
- Single Dialect vs. Multiple Dialect
- Form of Dialect

Dimensions of Classification

	Single Dialect	Multiple Dialect
Word	Classify word as MSA or DIA	Classify Word as MSA, IRQ, LEV, EGY, GLF,etc.
Document	Classify document as MSA or DIA, spectrum of Classical ←→Colloquial	Classify Document as MSA, IRQ, LEV, EGY, GLF,etc.

Difficulty of Dialect Identification...

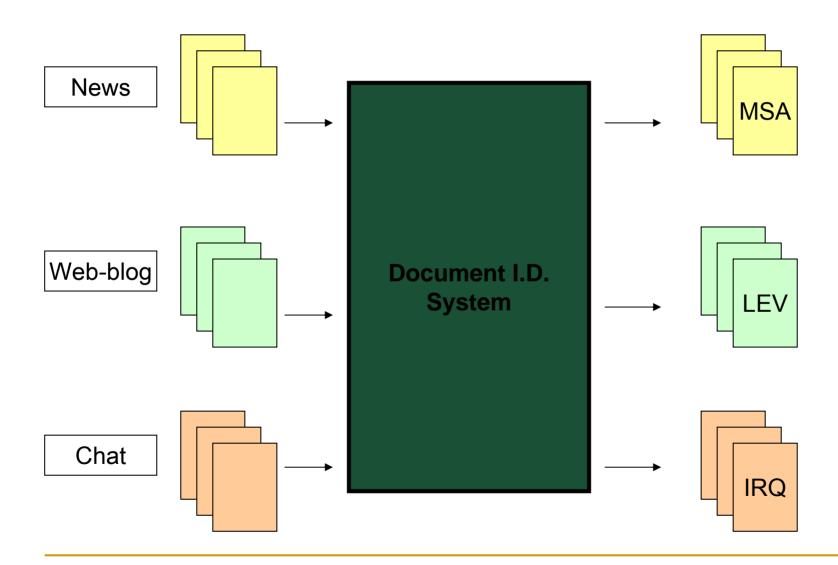
- Research Challenges
 - Require annotated development and test sets
 - Creating annotating resources (i.e. determining dialect)
 - Other resource requirements:
 - e.g. Word analyzers

	Single Dialect	Multiple Dialect
Word	* Hard to annotate * Need resources	* Harder to annotate * Need more resources
Document	URL annotated Corpora Textual resources that originate from known dialectal region	

The Problem Being Addressed...

- Document-level Multiple Dialect Classification
 - No Resources exist to identify an Arabic document's dialect
 - Unannotated Corpora exists!
 - □ (e.g. news groups, blogs, interviews, etc.)
 - Encompasses single dialect document-level classification
 - Precursor to word-level classification

Proposal



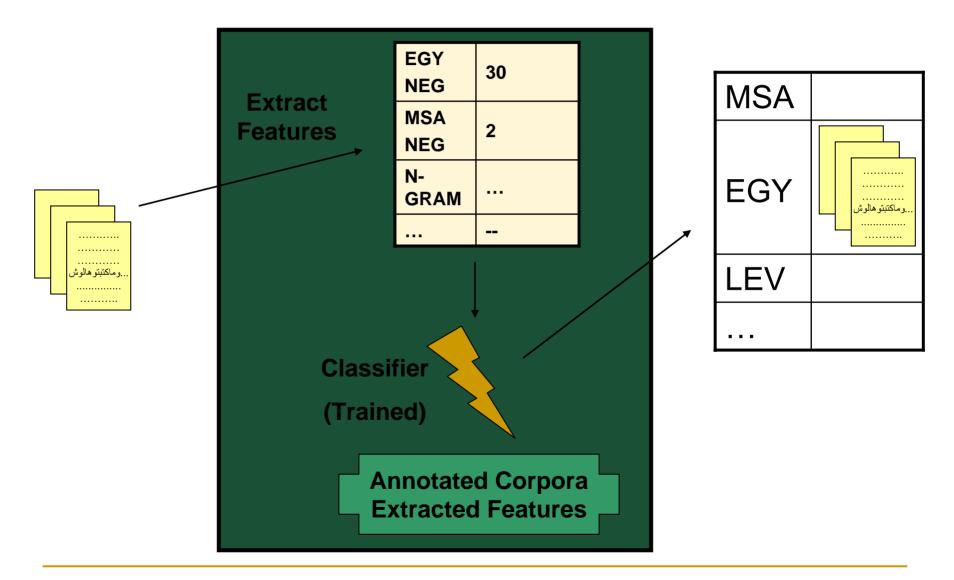
Proposed Solution

- Develop a text level analyzer to rank Arabic text (at the document level) on likelihood of being LEV, EGP, IRQ, MSA, etc ...
- Resources
 - Multidialectal corpus annotated by region
 - e.g. use URL of newsgroups
 - Dialect-specific wordlists
 - Any available word-level applications
 - e.g. morphological analyzer

Arabic Dialect Classification vs. Language Identification

- Language Identification
 - Different orthographies
 - Primarily unique vocabulary
- Arabic Dialect Classification
 - Not a simple Text Categorization Problem
 - Same orthography
 - Similar word roots
 - Non-uniform text
 - Code-switching

Proposed Approach



Global Overview

- Introduction
- Student Presentation: Safi Shareef
- Student Presentation: Vincent Lacey
- Lexicon
- Part-of-Speech Tagging
- Parsing
 - Introduction and Baselines
 - Sentence Transduction
 - Treebank Transduction
 - Grammar Transduction
- Conclusion

Statistical Mappings of Multiword Expressions Across Multilingual Corpora

Student Project Proposal

Proposal by

Vincent Lacey

Advisor: Mona Diab

Sponsor: Chin-Hui Lee

Georgia Tech

Columbia

Georgia Tech

First, some motivation:

"Ya be trippin' wit' dat tight truck jewelry."

Yes be falling wi constricting truck	ts that You be high v k jewe \fa .– Ya go\fe\\$ e\ ©\klay ;		You are crazy	
-5.439	Be – Be, Are, l€ .07		-1.34	
Yes be	0.42 Trippin வாகுping, Fa	allin <mark>g,4P</mark> ligh, C	ra z yu are	0.89
be falling	0.50Wit'— loy ¥itlej ,9l/ With	0.65	are crazy	0.70
falling wits	0.05 _{Dat - hright} with	0.45	crazy with	0.51
wits that	0.22Tight with 相转ticting;	Cool;94ice	with that	0.92
that constricting	0.35 Truck that reepl	0.69	that nice	0.72
constricting truck	0.15 Jewelispol ക്കുക്രിry	0.18	nice gold	0.25
truck jewelry	0.03 Truck gelderwelr Gold	l Je ₩ ê⊮y	gold jewelry	0.63

Lexical Issues

- Treebank transduction : MSA->Dialect
- Sentence transduction & grammar transduction:
 Dialect->MSA
- 20% of Levantine words are unrecognized by parsers trained on MSA
- No parallel corpora!

Road Map

- Some Intuition
- Mapping Single Words
- Preliminary Results

- Proposal: Mapping Multiword Expressions
 - Approach
 - Advantages & Applications
 - Work Plan

Some Intuition

Optimists play video games, <u>read</u> magazines and <u>listen</u> to the radio more than do pessimists, while pessimists watch more television...

Read the lyrics, <u>listen</u>, download and...

Who would <u>read</u> or even <u>listen</u> to this stuff??

Lo que me gusta hacer...

LEER

ESCUCHAR MUSICA <u>Y</u> SALIR

R(leer, y) = 0.65

Hoy, con una computadora y un programa especial, una persona ciega puede acceder a la primera biblioteca virtual en lengua hispana para discapacitados visuales, llamada Tiflolibros, y <u>leer</u>-mejor dicho, escuchar miles de libros por su cuenta.

R(read, listen) = 0.72

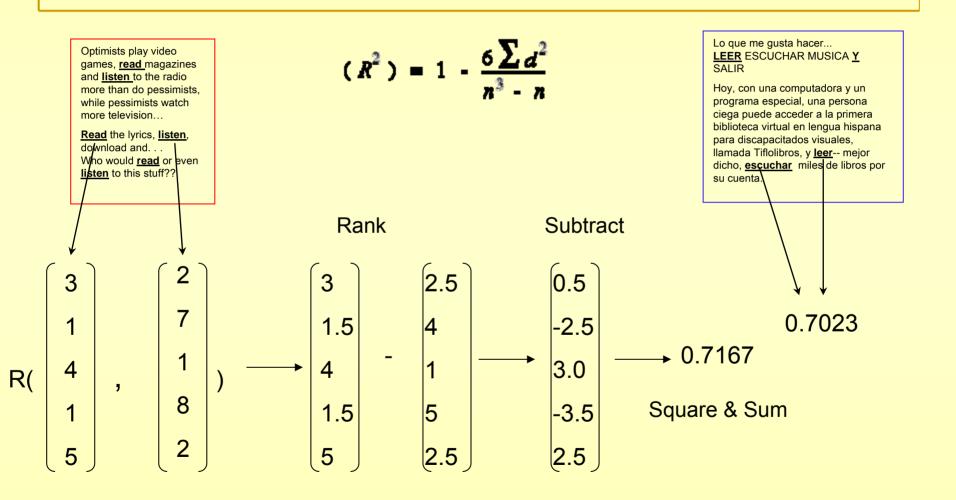
R(leer, escuchar) = 0.70

Road Map

- Some Intuition
- Mapping Single Words
- Preliminary Results

- Proposal: Mapping Multiword Expressions
 - Approach
 - Advantages & Applications
 - Work Plan

Mapping Single Words: Spearman



Mapping Single Words: Similarity Vectors

Repeat with 3 seed words:

truth =
$$\begin{pmatrix} 0.4305 \\ 0.5547 \\ 0.7120 \end{pmatrix}$$
 verisimilitude = $\begin{pmatrix} 0.4326 \\ 0.5937 \\ 0.6785 \end{pmatrix}$ golden = $\begin{pmatrix} 0.2279 \\ 0.7218 \\ 0.6534 \end{pmatrix}$

<truth, verisimilitude> = 0.9987

<truth, golden> = 0.9638

Mapping Single Words: Cognate Filters

Batterre....

december degestbervielbribæryochæbeln decenstbjely

family fameistons at times to prince so fix the state of the state of

people predente annues to insversite inspection people

china daitoaistrated japaen cultisia ijaspaia

$$lcsr = \frac{longest\ common\ substring}{longest\ string}$$

lcsr(government, gouvernement) = 10/12

Mapping Single Words: Map Reduction

```
involved _______ involved foreign ______ foreign ______ foreign policy ______ policy resolution school
```

Recall: **360**% Precision: **760**%

Preliminary Results: Method Comparison

(English-English comparable corpora)

Methods	Added Entries	Precision
Similarity	1000	86.4%
Similarity+LCSR	1000	92.5%
Similarity+LCSR+MapReduce	841	98.8%

Preliminary Results: Comparable Corpora Analysis

English-English Corpora	Precision *	
Size (words)	Comparable	Related
100M	99.7% (889)	87.6% (381)
20M	99.2% (825)	84.2% (319)
4M	96.3% (719)	77.7% (286)

Arabic MSA-MSA Corpora	Precision *	
Size (words)	Comparable	Related
100M	99.3% (764)	96.5% (654)
20M	98.2% (756)	87.1% (465)
4M	94.0% (625)	70.9% (288)

Comparable: Same genre ("same" newswire), overlapping coverage time

Related: Same genre (different newswire), some overlapping coverage time

Road Map

- Some Intuition
- Mapping Single Words
- Preliminary Results

- Proposal: Mapping Multiword Expressions
 - Approach
 - Advantages & Applications
 - Work Plan

Approach: Intersecting Sets

First pass:

kicked

the

bucket

kicked story die shove off

the of company person die

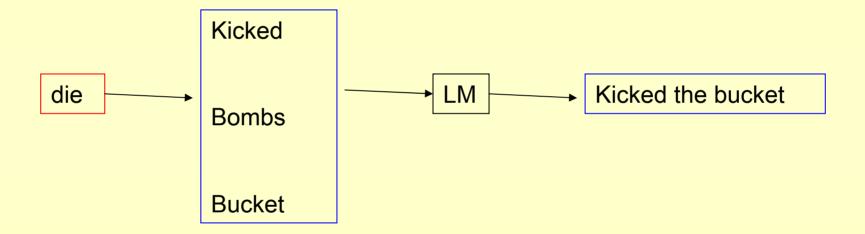
bucket die pail story conclusion

Second pass:

die

passed bombings bucket peace kicked

Approach: Synthesis



Evaluation

Using MWE data base at Columbia

Automated—no human intervention

Advantages & Applications

- No seed lexicon required
- No annotated corpora needed
- Fast and extensible

- Word Clustering
- Cross-lingual information retrieval issue point ban line force
- Phriase-basiedelmachime grams latiem ent ireland ireland yugoslavia cyprus canada sweden

Work Plan

Sources: English/Arabic/Chinese Gigaword

- Aug-Sept: Building initial MWE system
- Sept-Oct: Development testing
- Oct-Dec: Final experiments

Global Overview

- Introduction
- Student Presentation: Safi Shareef
- Student Presentation: Vincent Lacey
- Lexicon (Carol Nichols)
- Part-of-Speech Tagging
- Parsing
 - Introduction and Baselines
 - Sentence Transduction
 - Grammar Transduction
 - Treebank Transduction
- Conclusion

Local Overview: Lexicon

- Building a lexicon for parsing
 - Get the word to word relations
 - Manual construction
 - Vincent Lacey's presentation (Finch & Diab, 2000)
 - A variant of Rapp (1999)
 - Combination of resources
 - Assign probabilities
- Ways of using lexicons in experiments

Rapp, 1999

English corpus

People who like to read books are interesting.

seed dictionary
like ike-lay
books ooks-bay

Pig latin corpus

e-way ike-lay o-tay

ead-ray ooks-bay.

	like	books
are	0	1
read	1	1

	ike-lay	ooks-bay
ead-ray	1	1
e-way	1	0
•••		

Automatic Extraction from Comparable Corpora

- Novel extensions to Rapp, 1999:
 - Modification: add best pair to dictionary and iterate
 - When to stop? How "bad" is "bad"?
- English to English corpus: halves of Emma by Jane Austen
 - □ 97% of ~100 words added to dictionary correct
 - 39.5% of other words correct in top candidate
 - 61.5% of other words correct in top 10

Application to LEV-MSA

- Levantine development data & part of MSA treebank:
 - Used words that appeared in both corpora as seed dictionary
 - □ Held out known words: <10% in top 10</p>
 - Manual examination: sometimes clusters on POS
- Explanation:
 - These are small and unrelated corpora
 - If translation is not in other corpus, no chance of finding it!
 - Levantine: speech about family, MSA: text about politics, news

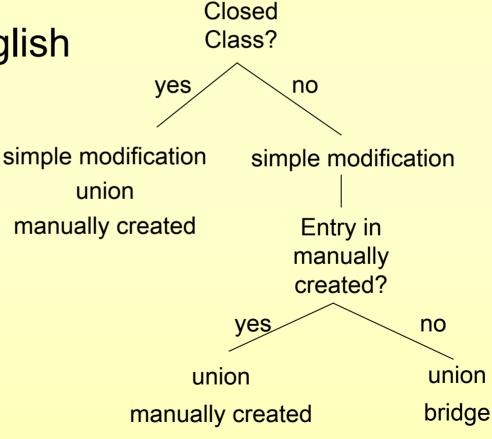
Contributors: Carol Nichols, Vincent Lacey, Mona Diab, Rebecca Hwa

Manual Construction

- Simple modification
- Bridge through English
- Manually created

Combination:

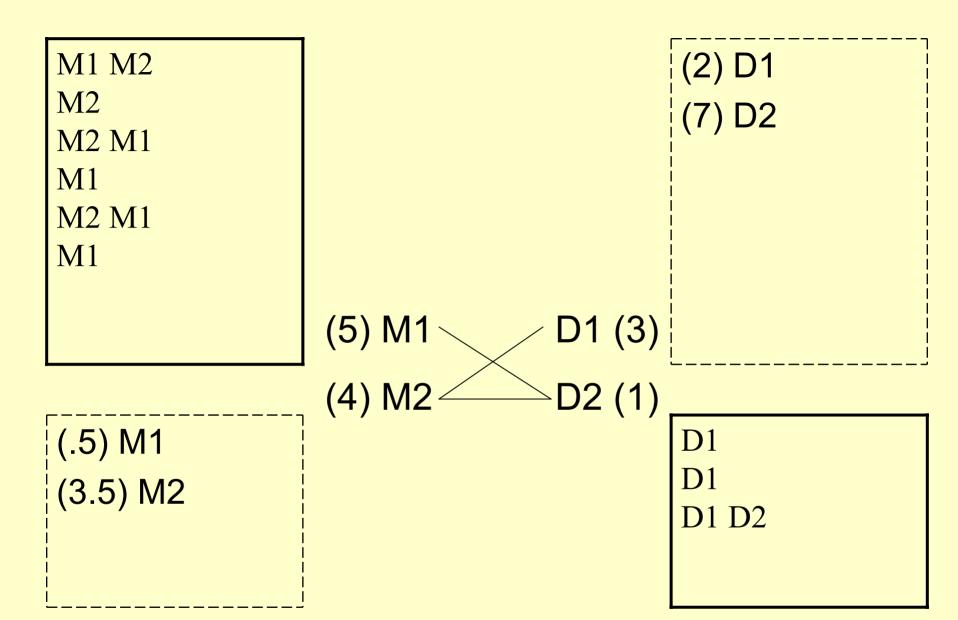
Contributors: Nizar Habash



Add Probabilities to Lexicons

- No parallel corpora to compute joint distribution
- Applying EM algorithm using unigram frequency counts from comparable corpora and many-to-many lexicon relations

 Contributors: Khalil Sima'an, Carol Nichols, Rebecca Hwa, Mona Diab, Vincent Lacey



Lexicons Used

- Does not rely on corpus specific information
 - Levantine closed class words
 - □ Top 100 most frequent Levantine words ← Lexicor
- Uses info from our dev set: occurrence, POS
 - Combined manual lexicon
 - Combined manual lexicon pruned
 - Leaves only non-MSA-like entries and translations found in ATB

Big Lexicon

- Transformed lexemes to surface forms using ARAGEN (Habash, 2004)
- Contributors: Nizar Habash, Carol Nichols, Vincent Lacey

Experiment Variations

POS tags	No	Small	Big
	Lexicon	Lexicon	Lexicon
None			
Automatic			
Gold			

Lexical Issues Summary

Main conclusions:

- Automatic extraction from comparable corpora for Levantine and MSA is difficult
- Using small and big lexicons can improve POS tagging and parsing

Future directions:

- Try other automatic methods (Ex: tf/idf)
- Try to find more comparable corpora

Global Overview

- Introduction
- Student Presentation: Safi Shareef
- Student Presentation: Vincent Lacey
- Lexicon
- Part-of-Speech Tagging (Rebecca Hwa)
- Parsing
 - Introduction and Baselines
 - Sentence Transduction
 - Grammar Transduction
 - Treebank Transduction
- Conclusion

POS Tagging

Assign parts-of-speech to Levantine words

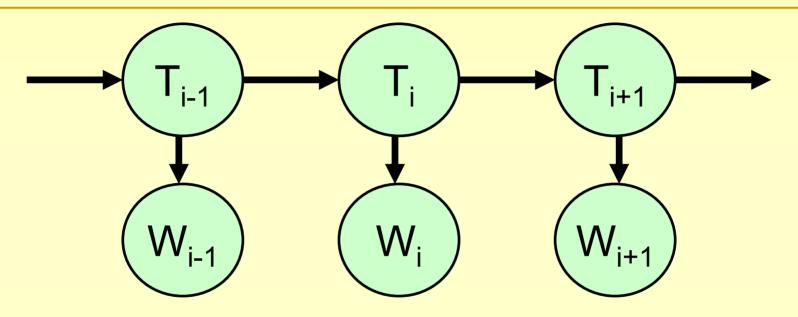
tEny VBP I+ IN +y PRP AIEA}Ip NN tmArp NNP ? PUNC

- Correctly tagged input gives higher parsing accuracies
- Assumptions
 - Have MSA resources
 - Levantine data is tokenized
 - Use reduced "Bies" tagset

Porting from MSA to LEV

- Lexical coverage challenge
 - 80% of word tokens overlap
 - 60% of word types overlap
 - 6% of the overlapped types (10% of tokens) have different tags
- Approaches
 - Exploit readily available resources
 - Augment model to reflect characteristics of the language

Basic Tagging Model: HMM



- Transition distributions: P(T_i |T_{i-1})
- Emission distributions: P(W_i |T_i)
- Initial model: MSA Bigram
 - Trained on 587K manually tagged MSA words

Tagging LEV with MSA Model

- Baselines: Train on MSA
 - □ Test on MSA: 93.4%
 - Test on LEV:
 - Dev (11.1K words): 68.8%
 - Test (10.6K words): 64.4%
- Train on LEV
 - 10-fold cross validation on LEV Dev: 82.9%
 - □ Train on LEV Dev, Test on LEV test: 80.2%
- Higher accuracies (~70%) are possible with models such as SVM (Diab et al., 2004)

Naïve Porting

- Assume no change in transitions P(T_i|T_{i-1})
- Adapt emission probabilities P(W|T)
 - Reclaim mass from MSA-only words
 - Redistribute mass to LEV-only words proportional to unigram frequency
- Unsupervised re-training with EM
- Results on LEV dev:
 - 70.2% without retraining
 - 70.7% after one iteration of EM
 - Further retraining hurts performance
- Result on LEV test: 66.1%

Error Analyses on LEV Dev

Transition

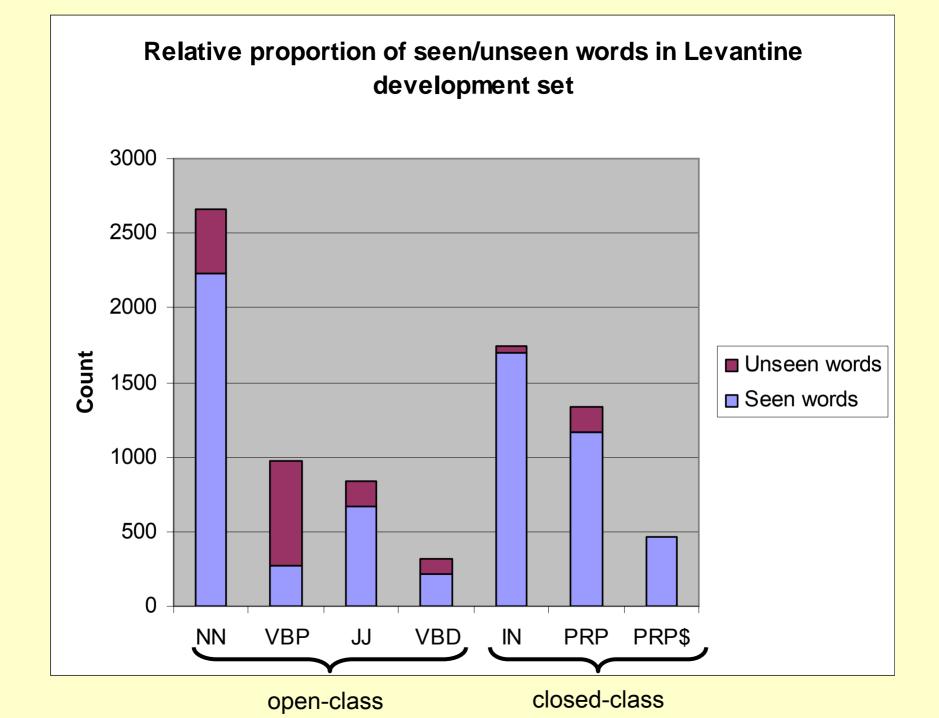
- Genre/Domain differences affect transition probabilities
- Retraining transition probabilities improves accuracy

Emission

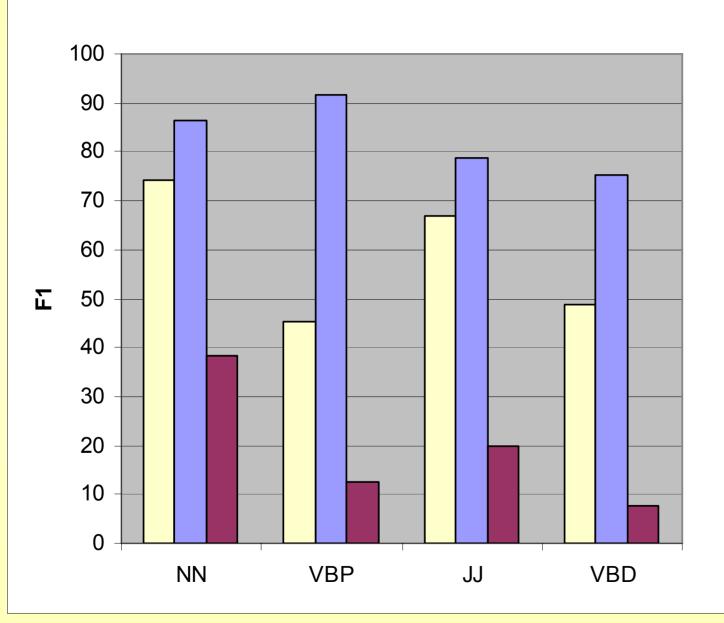
- Accuracy of MSA-LEV shared words: 84.4%
- Accuracy of LEV-only words: 16.9%
- Frequent errors on closed-class words

Retraining

Naïve porting doesn't give EM enough constraints



Tagging accuracy for open-class parts of speech



Overall accuracySeen-word accuracyUnseen-word accuracy

Exploit Resources

- Minimal linguistic knowledge
 - Closed-class vs. open-class
 - Gather stats on initial and final two letters
 - e.g., Al+ suggests Noun, Adj.
 - Most words have one or two possible Bies tags
- Translation lexicons
 - "Small" vs. "Big"
- Tagged dialect sentences
- Morphological analyzer (Duh&Kirchhoff, 2005)

Tagging Results on LEV Test

POS tags	No	Small	Big
	Lexicon	Lexicon	Lexicon
None			
Automatic			
Gold			

Tagging Results on LEV Test

	No Lexicon	Small Lexicon	Big Lexicon
Naive Port	66.6%		
Minimal Linguistic Knowledge	70.5%	77.0%	78.2%
+100 Tagged LEV Sentences (300 words)	78.3%	79.9%	79.3%

Baseline: MSA as-is: 64.4%

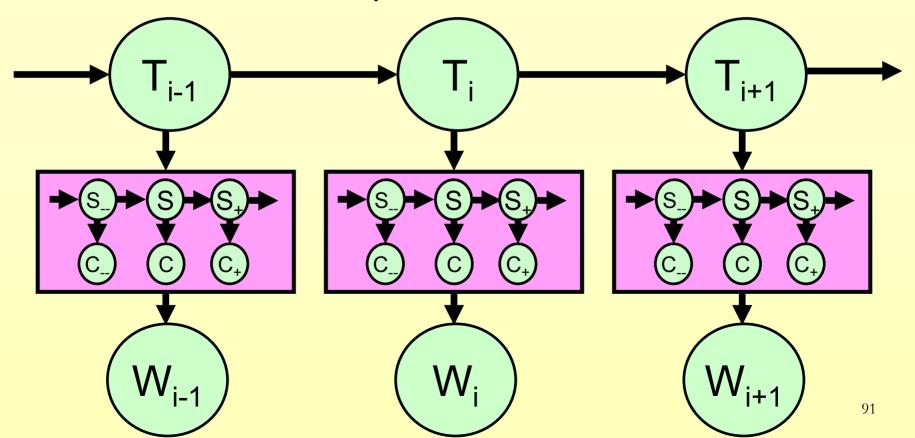
Supervised (~11K tagged LEV words): 80.2%

Ongoing Work: Augment Tagging Model

- Distributional methods promising for POS
 - Clark 2000, 2003: completely unsupervised
- We have much more distr. information
 - Some MSA parameters are useful
- LEV words' internal structure constrainable
 - morphological regularities useful for POS clustering (Clark 2003)

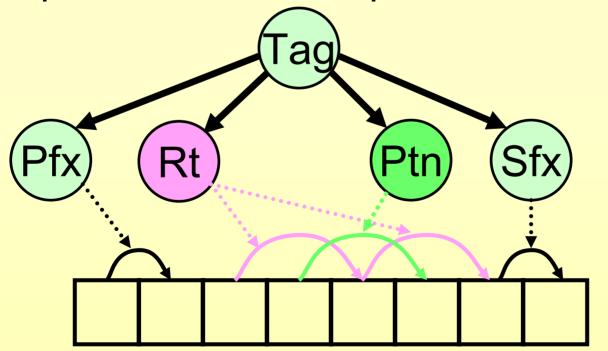
Version 1: Simple Morphology

- P(W|T) determined with character HMM
 - each POS has separate char. HMM



Version 2: Root-Template Morphology

- Character HMM doesn't capture lots of Arabic morphological structure
- Templates determine open-class POS



POS Tagging Summary

- Lexical coverage is a major challenge
- Linguistic knowledge helps
- Translation lexicons are useful resources
 - Small lexicon offers biggest bang for \$\$
- Ongoing work: improve model to take advantage of morphological features

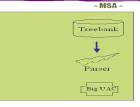
Global Overview

- Introduction
- Student Presentation: Safi Shareef
- Student Presentation: Vincent Lacey
- Lexicon
- Part-of-Speech Tagging
- Parsing
 - Introduction and Baselines (Khalil Sima'an)
 - Sentence Transduction
 - Treebank Transduction
 - Grammar Transduction
- Conclusion

Parsing Arabic Dialect

Baselines for Parsing

Parsing Arabic Dialects:The Problem



Baselines for Parsing LEV

Alternative baseline approaches to parsing Levantine:

- Unsupervised: Unsupervised induction
- MSA-supervised: Train statistical parser on MSA treebank

Hypothetical:

• Treebanking: Train on small LEV treebank (13k words)

Our approach:

• Without treebanking: Porting MSA parsers to LEV Exploring simple word transduction

Reminder: LEV Data

MSA is Newswire text - LEV is Callhome

For this project, the following strictly speech phenomena were removed from the LEV data (M. Diab):

- EDITED (restarts) and INTJ (interjections)
- PRN (Parentheticals) and UNFINISHED constituents
- All resulting SINGLETON trees

Resulting data:

- Dev-set (1928 sentences) and Test-set (2051 sentences)
- Average sentence length: about 5.5 wds/sen.

Reported results are F1 scores.

Baselines: Unsupervised Parsers for LEV

Unsupervised induction by PCFG [Klein & Manning].

Induce structure for the gold POS tagged LEV dev-set (R. Levy):

Model		Lab Brack.	Untyped Dep.	Typed Dep.
Unsupervised	42.6	_	50.9	_

Baselines: MSA Parsers for LEV (1)

MSA Treebank PCFG (R. Levy and K. Sima'an).

Model	Unlab	Lab	Untyped	Typed
	Brack.	Brack.	Dep.	Dep.
TB PCFG(Free)	63.5	50.5	56.1	34.7
TB PCFG(+Gold)	71.7	60.4	66.1	49.0
TB PCFG(+Smooth)	73.0	62.3	66.2	51.6

Most improvement (10%) comes from gold tagging!

Free: bare words input

+Gold: gold POS tagged input

+Smooth: (+Gold) + smoothed model

Baselines: MSA Parsers for LEV (2)

Gold tagged input:

Model	Unlab	Lab	Untyped	Typed
	Brack.	Brack.	Dep.	Dep.
TB PCFG (+G+S)	73.0	62.3	66.2	51.6
Blex.dep. (Bikel) ¹		60.9		
Treegram (Sima'an)	73.7	62.9	68.7	51.5
STAG (Chiang)	73.6	63.0	71.0	52.8

Free POS Tags

STAG (Chiang)	55.3	

Treebank PCFG doing as well as lexicalized parsers?

Treebanking LEV: A Reference Point

NOTE: This serves only as a reference point!

Train a statistical parser on 13k words LEV treebank. How good a LEV parser will we have?

D. Chiang:

- Ten-fold split LEV-dev-set (90%/10%) train/test sets
- Trained STAG-parser on train, tested on test:

```
Free tags: F1 = 67.7 Gold tags: F1 = 72.6
```

Questions:

- Will injecting LEV knowledge into MSA parsers give more?
- What kind of knowledge? How hard is it to come by?

Some Numbers About Lexical Differences

Without morphological normalization on either side.

In the LEV dev-set:

- 21% of word tokens are not in MSA treebank
- 27% of \(\langle word, tag \rangle \) occurrences are not in MSA treebank

The Three Fundamental Approaches

Sentence: Translate LEV sentences to MSA sentences

Treebank: Translate MSA treebank into LEV

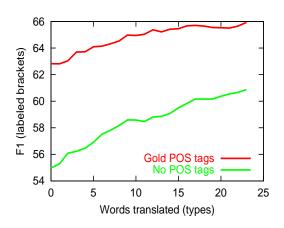
Grammar: Translate prob. MSA grammar into LEV grammar

Common to all three approaches: word-to-word translation

Let us try simple word-to-word translation

A Cheap Extension to the Baseline

Hypothesis: translating a small number of words will improve parsing accuracy significantly (D. Chiang & N. Habash).



Simple transduction "half-way" to LEV treebank parser

Preview of Baseline Results

Model	Unlab	Lab	Untyped	Typed
	Brack.	Brack.	Dep.	Dep.

Gold POS Tagged Input

			-	
STAG (Chiang)	73.6	63.0	71.0	52.8

Not Tagged Input (Free)

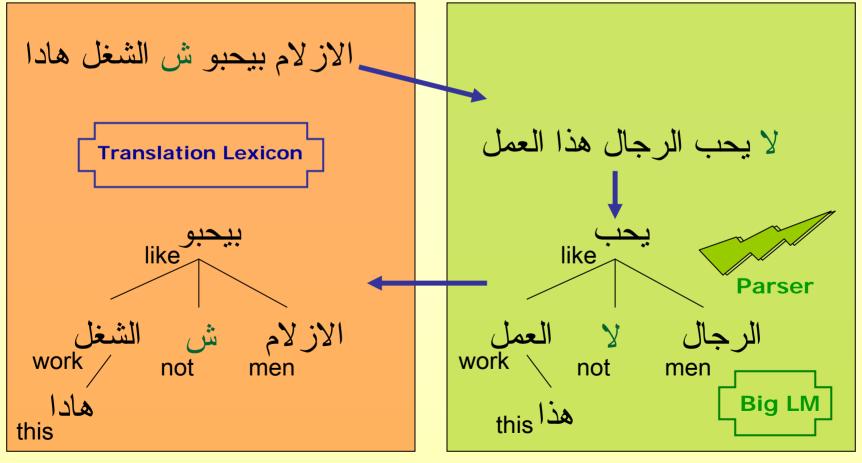
STAG (Chiang)	55.3		
---------------	------	--	--

Global Overview

- Introduction
- Student Presentation: Safi Shareef
- Student Presentation: Vincent Lacey
- Lexicon
- Part-of-Speech Tagging
- Parsing
 - Introduction and Baselines
 - Sentence Transduction (Nizar Habash)
 - Treebank Transduction
 - Grammar Transduction
- Conclusion

Sentence Transduction Approach

- Dialect - - MSA -



Contributors: Nizar Habash, Safi Shareef, Khalil Sima'an

Intuition/Insight

- Translation between closely related languages (MSA/Dialect) is relatively easy compared to translation between unrelated languages (MSA,Dialect/English)
- Dialect-MSA translation is easier than MSA-Dialect translation due to rich MSA resources
 - Surface MSA language models
 - Structural MSA language models
 - MSA grammars

Sentence Transduction Approach

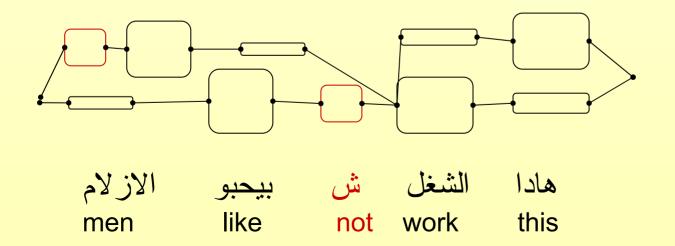
Advantages

MSA translation created as a side product

Disadvantages

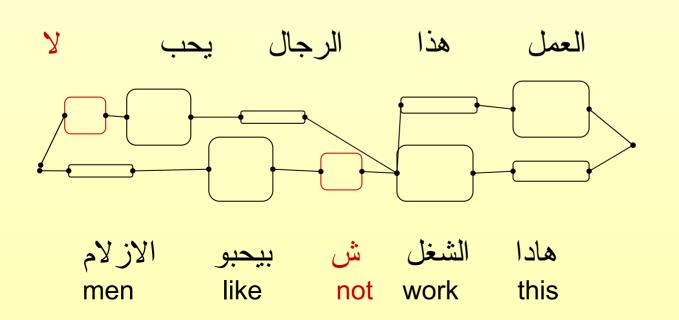
- No access to structural information for translation
- Translation can add more ambiguity for parsing
 - Dialect distinct words can become ambiguous MSA words
 - myn 'who'/ مين mn 'from'
 - mn 'who/from' من

- Translate dialect sentence to MSA lattice
 - Lexical choice under-specified
 - Linear permutations using string matching transformative rules



Lattice Translation

- Language modeling
 - Select best path in lattice

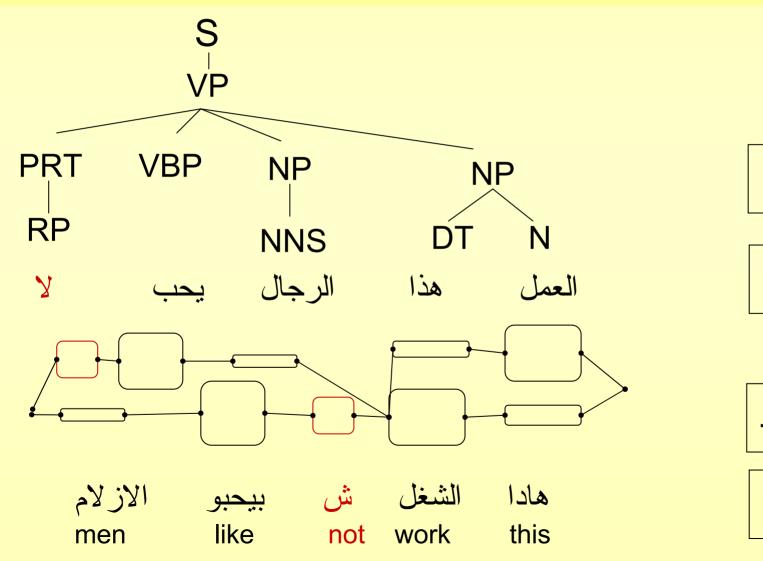


Language Model

Lattice Translation

MSA Parsing

Constituency representation

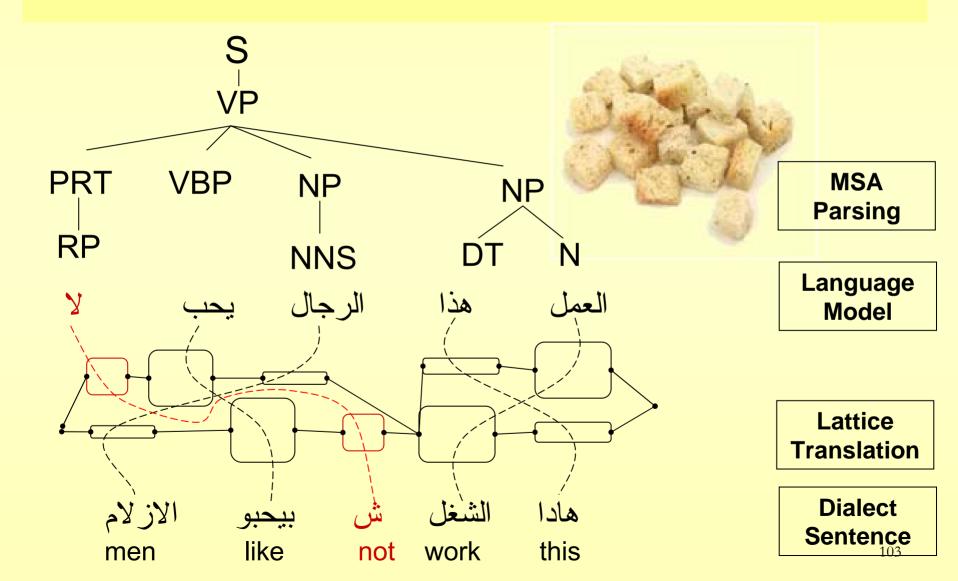


MSA Parsing

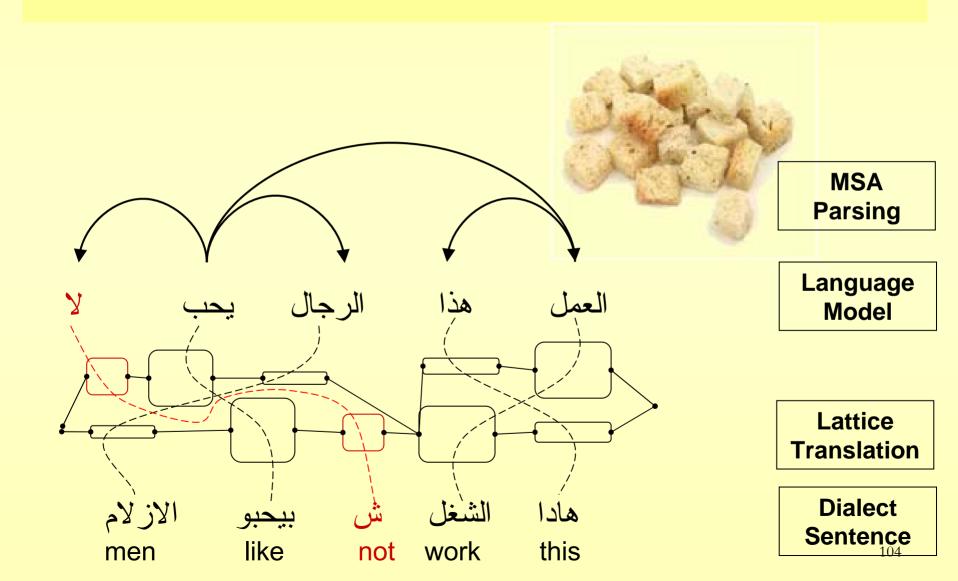
Language Model

Lattice Translation

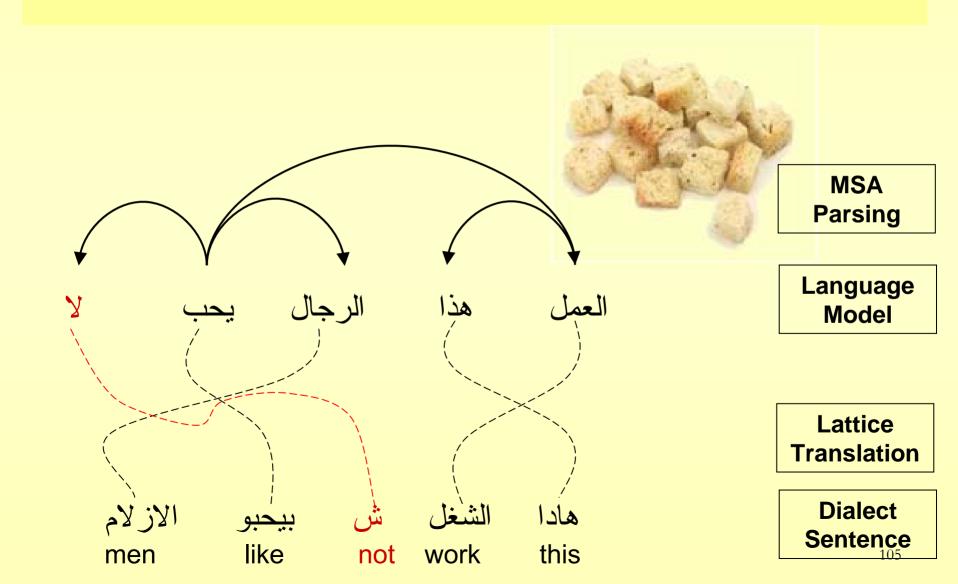
All along, pass links for dialect word to MSA words



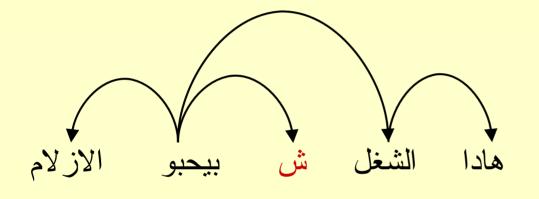
- Retrace to link dialect words to parse
 - Dependency representation necessary



- Retrace to link dialect words to parse
 - Dependency representation necessary



- Retrace to link dialect words to parse
 - Dependency representation necessary



MSA Parsing

Language Model

Lattice Translation

```
هادا الشغل ش بيحبو الازلام
men like not work this
```

DEV Results

- Bikel Parser, unforced gold tags, uniform translation probabilities
 - PARSEVAL P/R/F1

Tags	No Lexicon	Small Lexicon	Big Lexicon
None	59.4/51.9/55.4	63.8/58.3/61.0	65.3/61.1/63.1
Gold	64.0/58.3/61.0	67.5/63.4/65.3	66.8/63.2/65.0

POS tagging accuracy

Tags	No Lexicon	Small Lexicon	Big Lexicon
None	71.3	80.4	83.9
Gold	87.5	91.3	88.6

TEST vs DEV

PARSEVAL P/R/F1

	Lexicon None		Lexicon Small	
Tags	DEV	TEST	DEV	TEST
None	55.4	53.5	61.0	57.7
Gold	61.0	60.2	65.3	64.0

POS tagging accuracy

	Lexicon None		Lexicon Small	
Tags	DEV	TEST	DEV	TEST
None	71.3	67.4	80.4	74.6
Gold	87.5	86.6	91.3	89.8

Additional Experiments

- EM translation probabilities
 - Not much or consistently helpful
- Lattice Parsing alternative (Khalil Sima'an)
 - Using a structural LM (but no additional surface LM)
 - No EM probs used
 - PARSEVAL F1 score

	Lexicon None		Lexicon Small	
Tags	DEV	TEST	DEV	TEST
Gold	62.9	62.0	63.0	61.9

Linear Permutation Experiment

- Negation permutation
 - \square V \$/RP \rightarrow IA/RP V
- 3% in Dev, 2% in Test
- Dependency accuracy

	Lexicon Small			
	DEV TEST			
Tags	NoPerm	PermNeg	NoPerm	PermNeg
Gold	69.6	69.7	67.6	67.3

Conclusions & Future Plans

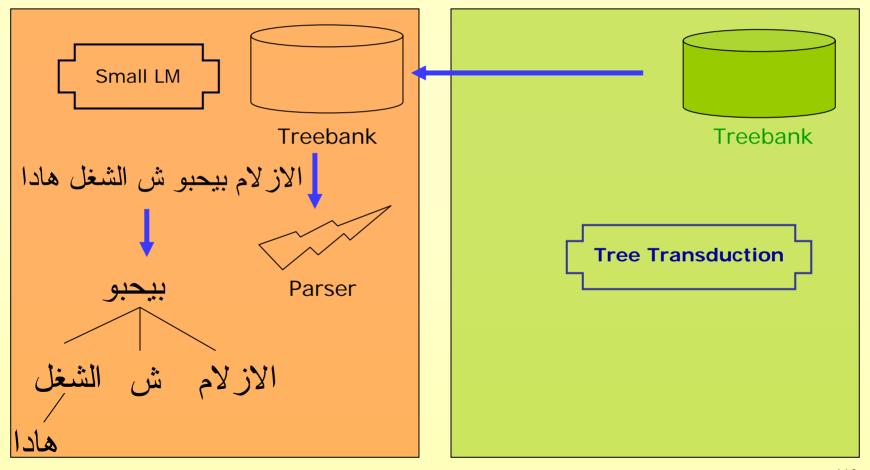
- Framework for sentence transduction approach
- 22% reduction on pos tagging error (DEV=32%)
- 9% reduction on F1 labeled constituent error (DEV=13%)
- Explore a larger space of permutations
- Better LMs on MSA
- Integrate surface LM probabilities in lattice parsing approach
- Use Treebank/Grammar transduction parses (without lexical translation)

Global Overview

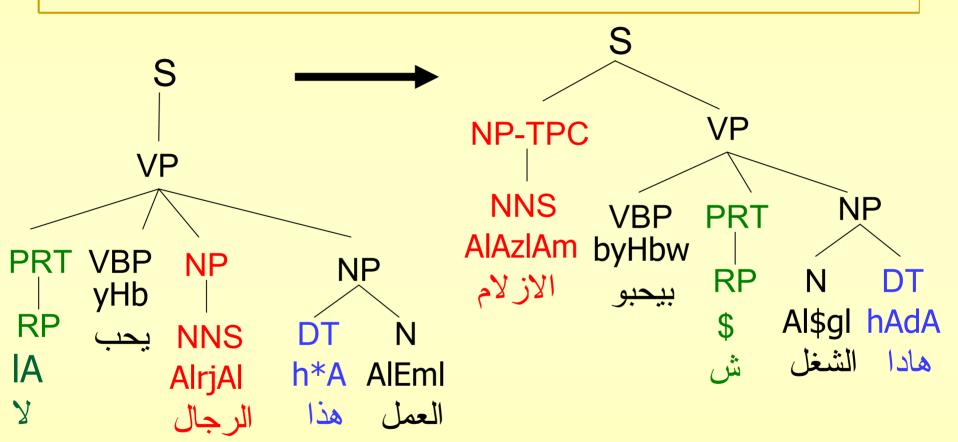
- Introduction (Owen Rambow)
- Student Presentation: Safi Shareef
- Student Presentation: Vincent Lacey
- Lexicon
- Part-of-Speech Tagging
- Parsing
 - Introduction and Baselines
 - Sentence Transduction
 - Treebank Transduction (Mona Diab)
 - Grammar Transduction
- Conclusion

MSA Treebank Transduction

- Dialect - - MSA -



Objective



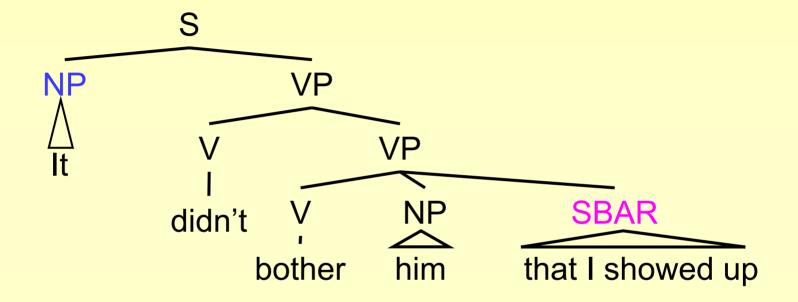
Approach

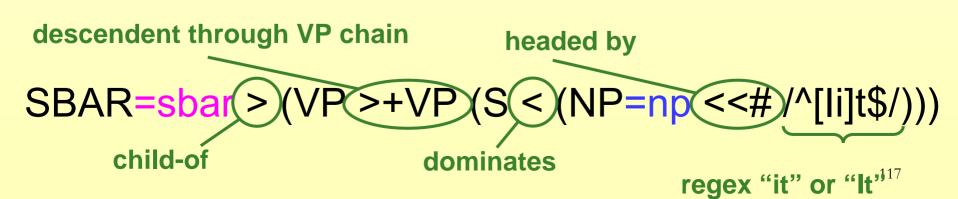
- Structural Manipulations
 - Tree normalizations
 - Syntactic transformations
- Lexical Manipulations
 - Lexical translations
 - Morphological transformations

Resources Required

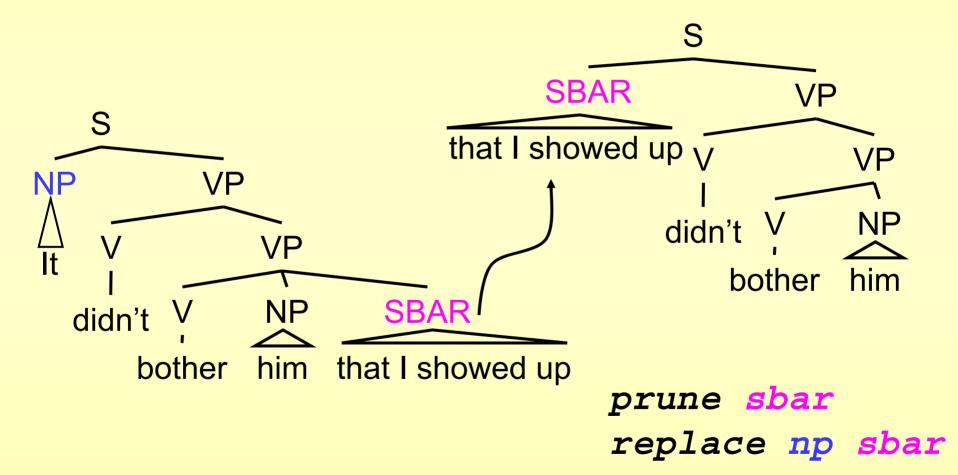
- MSA Treebank (provided by LDC)
- Knowledge of systematic structural transformations (scholar seeded knowledge)
- Tool to manipulate existing structures (Tregex & Tsurgeon)
- Lexicon of correspondences from MSA to LEV (automatic + hand crafted)
- Evaluation corpus

Tregex (Roger Levy)



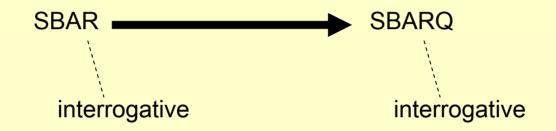


Tsurgeon (Roger Levy)

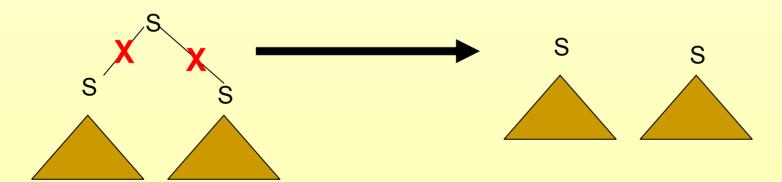


Tree Normalizations

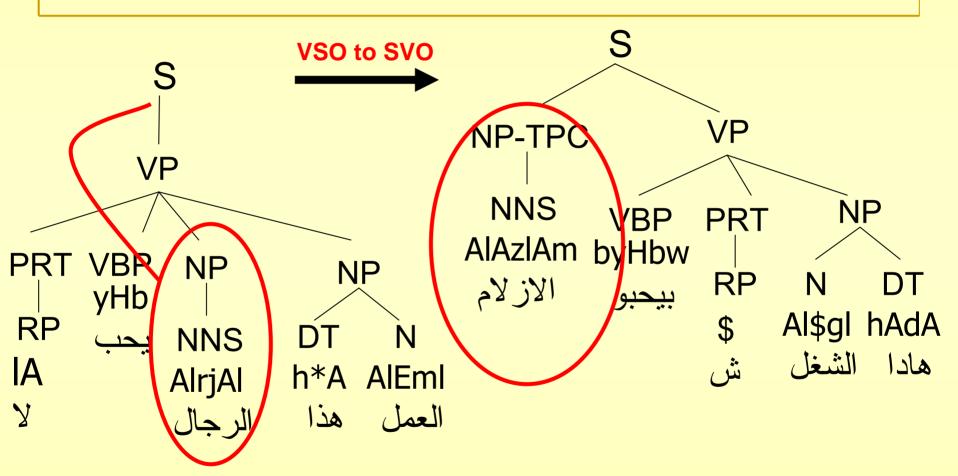
Fixing annotation inconsistencies in MSA TB

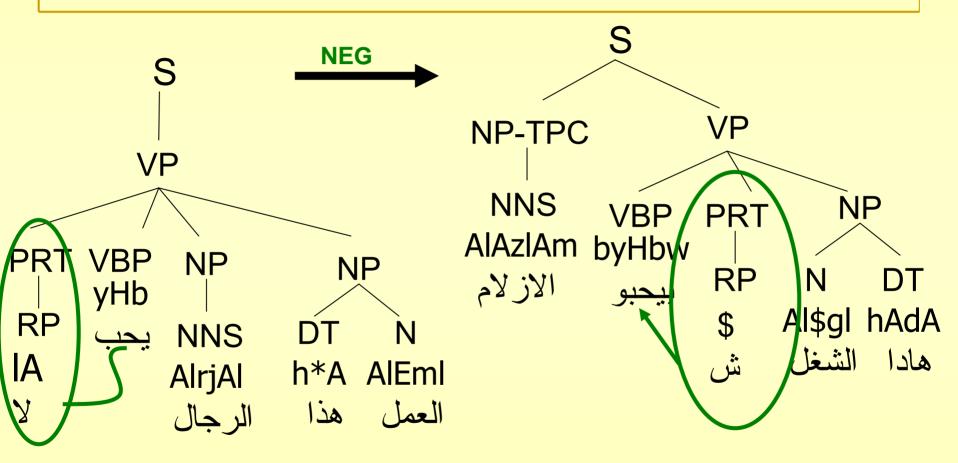


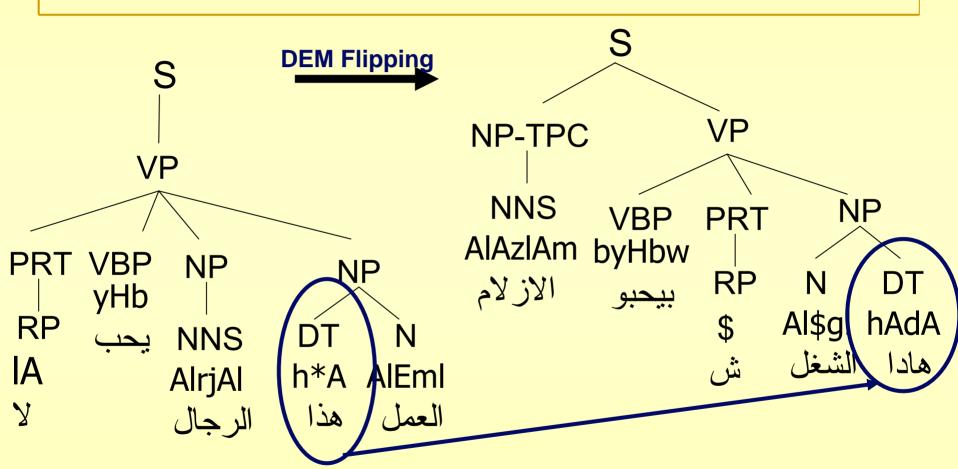
Removing superfluous Ss



- SVO-VSO
- Fragmentation
- Negation
- Demonstative Pronoun flipping







Lexical Transformations

- Using the dictionaries for finding word correspondences from MSA to LEV {Habash}
 - SM: Closed Class dictionary in addition to the 100 most frequent terms and their correspondences
 - LG: SM + open class LEV TB dev set types
- Two types of probabilities associated with entries in dictionary: {Nichols, Sima'an, Hwa}
 - EM probabilities
 - Uniform probabilities

Morphological Manipulations

 Replacing all occurrences of MSA VB 'want' to NN 'bd' and inserting possessive pronoun

Replacing MSA VB /lys/ by and RP m\$

Changing VBP verb to VBP b+verb

Experiments

- Tree normalization
- Syntactic transformations
- Lexical transformations
- Morphological transformations
- Interactions between lexical, syntactic and morphological transformations

Parser

Bikel Parser off-shelf

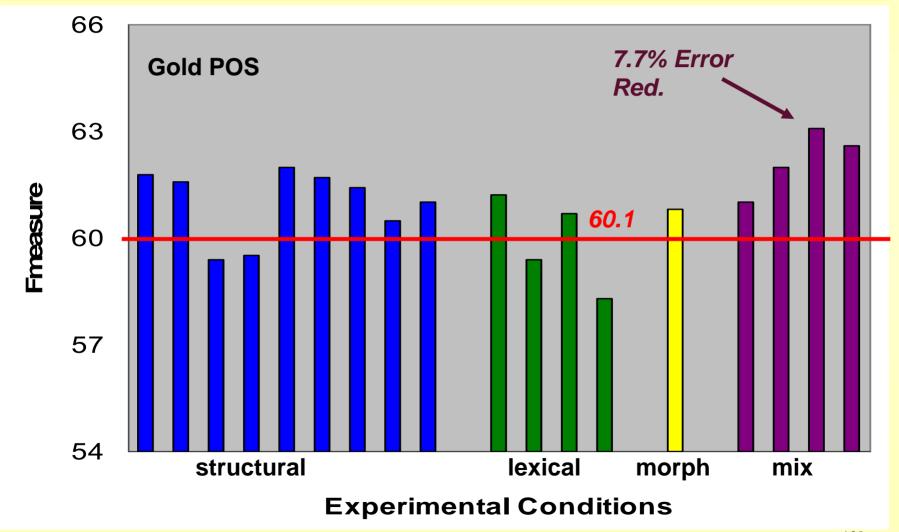
Evaluation

Labeled precision/Labeled recall/F-measure

Experiment Variations

POS tags	No	Small	Big
	Lexicon	Lexicon	Lexicon
None	53.2F		
Automatic			
Gold			

Performance on DevSet



Results

F measure/GoldTag	Dev	Test
Baseline	60.1	60.2
TNORM+NEG	62	61
Lex SM+EMprob	61.2	59.7
MORPH	60.8	60
Lex SM+EMprob +MORPH	61	59.8
TNORM+NEG +MORPH	62	60.6
TNORM+NEG+Lex SM+EM	63.1	61.5
TNORM+NEG+Lex SM+EM +MORPH	62.6	61.2

Observations

- Not all combinations help
- Morphological transformations seem to hurt when used in conjunction with other transformations
- Difference in domain and genre account for uselessness of the large dictionary
- EM probabilities seem to play the role of LEV language model
- Caveat: Lexical resources even for closed class are created for LEV to MSA not the reverse (25% type defficiency in coverage of closed class items)

Conclusions & Future Directions

Resource consistency is paramount

Future Directions

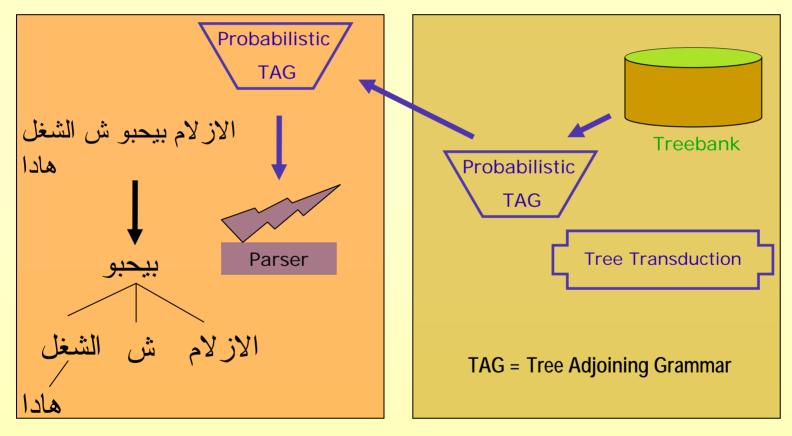
- More Error analysis
- Experiment with more transformations
- Add a dialectal language model
- Experiment with more balanced lexical resources
- Test applicability of tools developed here to other Arabic dialects
- Maybe automatically learn possible syntactic transformations?

Global Overview

- Introduction (Owen Rambow)
- Student Presentation: Safi Shareef
- Student Presentation: Vincent Lacey
- Lexicon
- Part-of-Speech Tagging
- Parsing
 - Introduction and Baselines
 - Sentence Transduction
 - Treebank Transduction
 - Grammar Transduction (David Chiang)
- Conclusion

Grammar Transduction

- Dialect - - MSA -

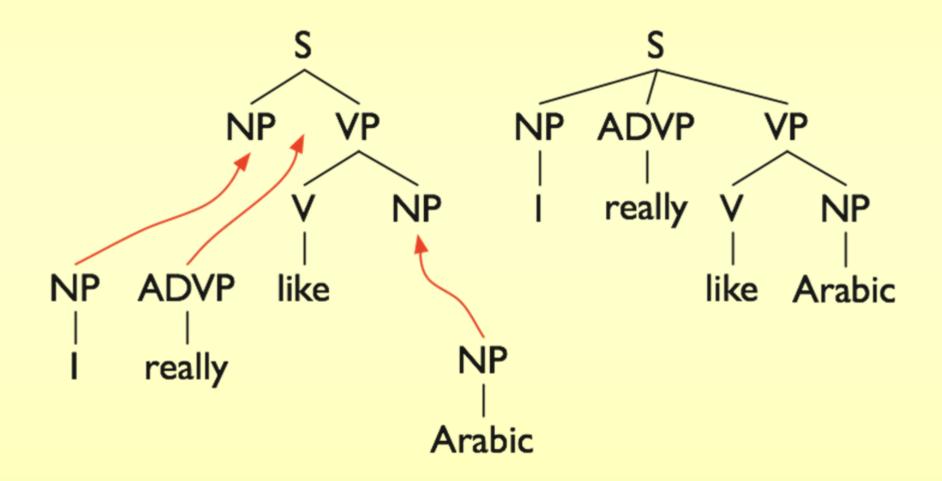


Grammar Transduction

- Transform MSA parsing model into dialect parsing model
- More precisely: into an MSA-dialect synchronous parsing model
- Parsing model is defined in terms of treeadjoining grammar derivations

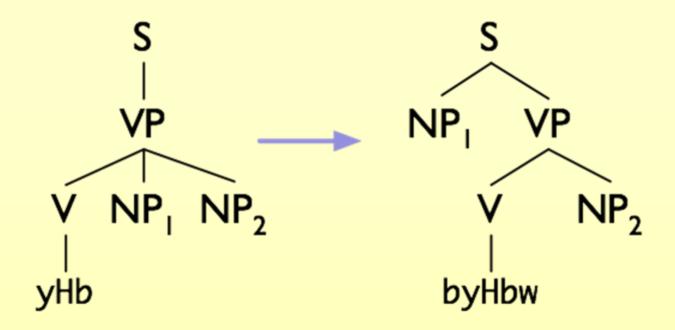
Contributors: David Chiang and Owen Rambow

Tree-Adjoining Grammar



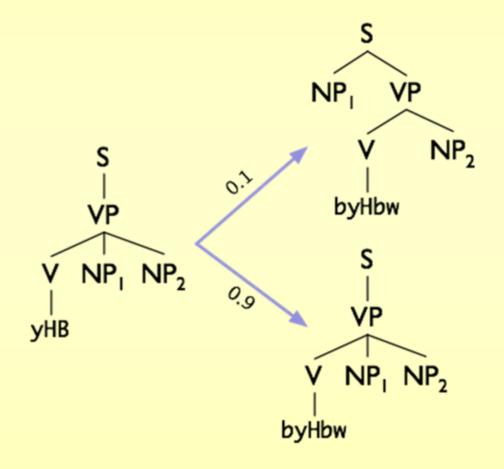
Transforming a TAG

Thus: to transform a TAG, we specify transformations on elementary trees



Transforming Probabilities

- MSA parsing model is probabilistic, so we need to transform the probabilities too
- Make transformations probabilistic: this gives P(T_{Lev}|T_{MSA})



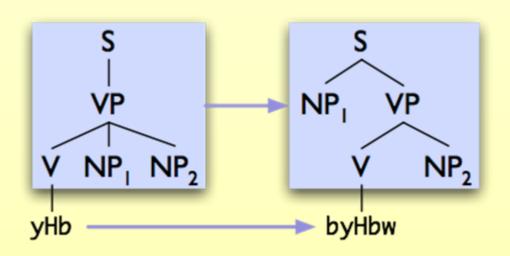
Probability Model

To parse, search for:

arg max P(T_{Lev}) ≈ arg max P(T_{Lev}, T_{MSA})
= arg max P(T_{Lev}|T_{MSA}) P(T_{MSA})
given by learned from grammar MSA treebank transformation

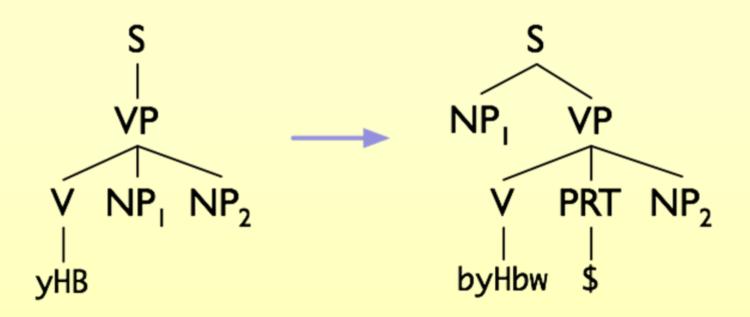
Probability Model

- Full set of mappings is very large, because elementary trees are lexicalized
- Can backoff to translating unlexicalized part and lexical anchor independently



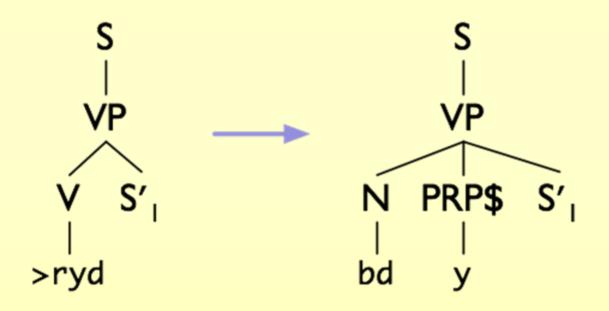
Transformations

- VSO to SVO transformation
- Negation:



Transformations

'want'



Experiments (devtest)

POS tags	No Lexicon	Small Lexicon	Big Lexicon
None			
Automatic			
Gold			

Results (devtest)

	Recall	Prec	F1
Baseline	62.5	63.9	63.2
Small lexicon	67.0	67.0	67.0
VSO→SVO	66.7	66.9	66.8
negation	67.0	67.0	67.0
'want'	67.0	67.4	67.2
negation+'want'	67.1	67.4	67.3

Experiments (test)

POS tags	No Lexicon	Small Lexicon	Big Lexicon
None			
Automatic			
Gold			

Results (test)

	Recall	Prec	F1
Baseline	50.9	55.4	53.1
All, no lexical	51.1	55.5	53.2
All, small	58.7	61.8	60.2
All, large	60.0	62.2	61.1

Further Results

- Combining with unsupervised POS tagger hurts (about 2 points)
- Using EM to reestimate either P(T_{Lev}|T_{MSA}) or P(T_{MSA})
 - no lexicon: helps first iteration (about 1 point), then hurts
 - small lexicon: doesn't help

Conclusions

- Syntactic transformations help, but not as much as lexical
- Future work:
 - transformations involving multiple words and syntactic context
 - test other parameterizations, backoff schemes

Global Overview

- Introduction
- Student Presentation: Safi Shareef
- Student Presentation: Vincent Lacey
- Lexicon
- Part-of-Speech Tagging
- Parsing
 - Introduction and Baselines
 - Sentence Transduction
 - Treebank Transduction
 - Grammar Transduction
- Conclusion (Owen Rambow)

Accomplishments

- Created software for acquiring lexicons from comparable corpora
- Investigated use of different lexicons in Arabic dialect NLP tasks
- Investigated POS tagging for dialects
- Developed three approaches to parsing for dialects, with software and methodologies

Summary: Quantitative Results

POS tagging

- No lexicon to small lexicon: 70% to 77%
- Small lexicon to small lexicon with in-domain information: 77% to 80%

Parsing

- No lexicon to small lexicon: 63.2% to 67%
- Small lexicon to small lexicon with syntax: 67% to 67.3%
- Train on 10,000 trebanked words: 69.3%

Resources Created

Lexicons:

- Hand-created closed-class, open-class lexicons for Levantine
- POS Tagging:
 - Software for adapting MSA tagger to dialect
- Parsing:
 - Sentence-transduction & parsing software
 - Tree-transformation software
 - Synchronous grammar framework
- Treebanks
 - Transduced dialect treebank

Future Work

- Improve reported work
 - Comparable corpora for Arabic dialects
 - Improve POS results
 - Explore more tree transformations for grammar transduction, treebank transduction
 - Include structural information for key words
- Combine leveraging MSA with use of small Levantine treebank
 - Already used in POS tagging
 - Combine transduced treebank with annotated treebank
 - Augment extracted grammar with transformed grammar

ı		
П		
П		
П		
П		
1		
П		
1		
П		
ı		
ı		
П		
ı		
П		
ı		
1		
П		