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1 Introduction

As people become ever more mobile and national and global economies ever more integrated, an
ever larger population finds themselves needing to communicate in a language that is not their
own. For Automatic Speech Recognition (ASR) this vast number of speakers of multiple languages
implies the need to deal with accented speech, and indeed adapting to foreign-accented speech is
an important problem in current speech recognition research (Kumpf and King, 1996; Teixeira,
Trancoso, and Serralheiro, 1996; Lincoln, Cox, and Ringland, 1998; Huang et al., 2000; Livescu
and Glass, 2003; Chen et al., 2001; Teixeira et al., 2001; Schultz et al., 2002; Huang, Chen, and
Chang, 2004; Wang, Schultz, and Waibel, 2003; Liu and Fung, 2003a; Liu and Fung, 2003b; May-
field Tomokiyo and Waibel, 2001; He and Zhao, 2003; Mayfield Tomokiyo, 2000)

The extensive literature on foreign-accented speech has often focused on English spoken with
a foreign accent. Recognition of accented English is a crucial problem since English is a world
language, with a very large number of second-language speakers, whether as imigrants in English-
speaking countries like the United States, Britian, or Australia, or as speakers who use English in
the world market.

Our focus in this project is on a different problem: recognizing accented speech in Chinese.
China is a huge country and speech recognition of Chinese is an socially, economically, and po-
litically important goal. Furthermore, there is a single standard spoken language in China, called
Putonghua (‘common language’) in Chinese. But Putonghua is spoken extremely differently in
different parts of China. This is because Chinese is a language with many so-called dialects (

���

fāngyán), the major groups of which are Mandarin, Yue (including Cantonese), Min (including Fu-
jianese, Taiwanese), Wu (including Shanghainese), Xiang (Sichuan) and Gan (Zhejiang) (Norman,
1988; Ramsey, 1989); see Figure 1. For political reasons these different forms of speech are called
dialects, but from a linguistic point of view they are better thought of as separate languages, as
different from each other as, say the Romance languages French, Spanish, Italian, Portuguese and
Romanian. Within each ‘dialect’ region there are of course further regional variants, so that there
are for example many dialects of Mandarin, of Yue, of Wu and so forth. The standard language,
Putonghua, is a version of Mandarin, and indeed is often called Mandarin or Standard Mandarin in
the speech recognition literature (for example in databases like CallHome Mandarin) but since the
term Mandarin also denotes a ‘dialect’ region, we will exclusively use the term Putonghua to refer
to this national standard language.

These days anyone from any of the ‘dialect’ regions who goes to school will learn Putonghua
as part of their education. For speakers of Mandarin dialects this is similar to English speakers in
various parts of the United States learning Standard American English. For speakers of other ‘di-
alect’ regions, such as the Wu region around Shanghai, the task is akin to a speaker of, say, Spanish
going to school and learning, say, French. In essence, when a native speaker of Shanghainese learns
Putonghua, they are learning a foreign language. But, again for political reasons, the situation is
not viewed as a case of foreign language learning, but rather a case of people who natively speak a
different ‘dialect’ learning the standard language.

Since China is so large, and the regional accents of Putonghua so varied and so numerous,
the task of speech recognition of dialectally accented Putonghua is hugely important. Recognizers
trained on speakers from Beijing, the capital, perform poorly when tested on speakers from other
large cities like Guangzhou or Shanghai.



Dialectal Chinese Speech Recognition: Final Report. 2

Our goal in this project is to study how to address this crucial problem of ASR on Putonghua
spoken in dialect regions. We have chosen for the 6-week 2004 workshop to focus on one dialect
region: Wu, which is the language that includes the city of Shanghai. We chose Wu because it has
the largest number of speakers of any non-Mandarin Chinese language. One 1991 source estimates
that there are 87 million native Wu speakers.

Figure 1: Map of Southern China with a boundary delimiting the Wu speaking region. From (Ramsey, 1989).

The theme of this project is thus Wu Dialectal Chinese Speech Recognition or in other words
ASR aimed at recognizing speech in the Putonghua language when spoken by people who are
native speakers of the Wu languages. We will focus mainly on native speakers of the particular Wu
language known as Shanghainese, and spoken in Shanghai.

Methods for dealing with accented speech vary from simply collecting data in that accent and
training a recognizer, to various ways of adapting recognizers trained on unaccented speech.

Our focus in this work is on adaptation. We collected a database of Shanghainese accented
Putonghua, and then investigated a number of different methods for improving recognition on this
task by adapting recognizers that had been trained on standard Putonghua.

One class of methods we investigated is acoustic adaptation. We studied both MLLR and MAP
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adaptation, in which relatively small amounts of Shanghainese-accented Putonghua data are used to
adapt acoustic models that were trained on standard Putonghua.

We also performed a number of experiments on lexicon adaptation, in which the standard Pu-
tonghua pronunciation dictionary was adapted in various ways to Shanghai-accented Putonghua.

Finally, we explored the idea that speakers have varying degrees of accent in their Putonghua.
Previous work on accented Chinese speech recognition — e.g. (Huang et al., 2000; Chen et al.,
2001; Huang, Chen, and Chang, 2004; Liu and Fung, 2003b) — has tended to treat speakers from a
given ‘dialect’ region as a single class. However speakers clearly have differing degrees of accent,
so a central goal of this project was to investigate the utility of detecting and utilizing degree of
accent in ASR.

In summary, the goals of this project were as follows:

• To provide useful baselines and upper bounds, and to investigate a variety of techniques for
modeling accented speech in ASR.

• To investigate both acoustic and lexical techniques for adapting standard Putonghua recog-
nizers to accented Putonghua.

• To develop methods for detecting the degree of accentuation, and test whether modeling de-
gree of accentuation is useful for improving ASR on accented speech.

2 Background

2.1 Accent Adaptation: Background and Previous Research

Many researchers have studied the problem of adaptation to an accented speaker. Most methods
have focused on one of two areas: acoustic adaptation or lexicon adaptation.

2.1.1 Acoustic Adaptation to Accent

A wide variety of acoustic adaptation methods have been investigated. The simplest method of
course, is simply to train on accented data. Even a small amount of accented training data seems to
be sufficient. Wang, Schultz, and Waibel (2003) investigated German-accented English speakers in
the VERBMOBIL (conversational meeting planning) task. They showed that training on 52 minutes
of non-native data (German-accented English) was much better (WER=43.5%) than training on 34
hours of native English data from the exact same domain (WER=49.3%). The next natural approach
is to pool accented acoustic training data with un-accented data and train acoustic models on the
combination. Wang, Schultz, and Waibel (2003) showed that simply pooling 34 hours of native
data with 52 minutes of non-native data dropped the error rate slightly to 42.3%. Combining the
two with an interpolation weight in order to give more weight to the accented data can work even
better; Wang, Schultz, and Waibel (2003) found that when an optimal (oracle) interpolation weight
was chosen, the error rate dropped to 36.0%.

A similar method is to train models on native speech, and then run a few additional forward-
backward iterations with non-native speech. Mayfield Tomokiyo and Waibel (2001) examined the
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task of recognizing Japanese-accented English in the VERBMOBIL domain. She had native En-
glish speaker data in the VERBMOBIL domain. She then collected 3 hours of wideband English
speech from native speakers of Japanese who had had 6-8 years of English study, had lived in
English-speaking country for 6-12 months, and reported difficulty in making themselves under-
stood. She showed that simply pooling well-trained native English VERBMOBIL models with 3
hours of Japanese-accented English dropped WER from approximately 63% to 53%. When instead
of retraining, she tried training on native English and then and then doing 2 additional forward-
backward iterations with the 3 hours of accented data, WER dropped to 48%.

The effect of training directly on accented speech is of course even more profound if more data
is available, or if the native speech was not in the same domain as the accented speech. (Ikeno et
al., 2003) found that WER on a Spanish-accented conversational English test set dropped almost
in half, from 68.5% (when trained on out of domain (WSJ) text from native English speakers) to
39.2% (when trained on 20 hours of in-domain Spanish accented English).

In conclusion, training on non-native data, especially when mixed with in-domain native data,
provides the most obvious gains in performance on accented data.

More sophisticated acoustic methods for accent involve applying standard speaker adaptation
techniques like MLLR and MAP adaptation to accented speakers. Both methods have been applied
by many researchers to accented speech with extremely good results.

In MLLR adaptation (Leggetter and WoodlandP, 1995), counts from an adaptation dataset are
used to train a transformation which is applied to the mean vectors of the gaussian PDFs. The
transformation matrices are trained via EM to maximize the likelihood of the adaptation data. There
can be a single matrix, or multiple transforms can be built, perhaps one for each context-independent
phone.

The simplest use of adaptation was merely the direct use of MLLR to adapt individually to each
test speaker. In an extremely similar task to ours, (recognizing Shanghainese-accented Putonghua)
Huang et al. (2000) applied MLLR adaptation to a Microsoft Whisper system that had been trained
on 100,000 sentences from 500 speakers from the Beijing area. Their test set was 10 male speakers
from the Shanghai area. Their 187 phones were classified into 65 regression classes, and the MLLR
transformation ioncluded both diagonal matrix and bias offsets. They applied MLLR adaptation
indidivually to each speaker, using from 10 to 180 sentences from each speaker. On average, use of
MLLR dropped the WER from a baseline of 23.18% to 21.48% after seeing 10 sentences (a decrease
of 1.7% absolute) and to 15.50% after seeing 180 sentences (a decrease of 7.68% absolute).

A more complex use of MLLR was to adapt not just to the single accented test speaker, but
to a larger number of accented speakers. Mayfield Tomokiyo and Waibel (2001) studied Japanese-
accented English in the VERBMOBIL domain as discussed above. They used 50 sentences from
test-speakers to do MLLR adaptation. Their baseline was to train on native English speakers, but
use MLLR on individual test speakers for a WER of 63%. Using MLLR to adapt to 150 sentences
from 3 speakers decreased WER to 58%, Using MLLR to adapt to 750 sentences (50 each from 15
speakers) decrease WER to 53% (unfortunately all WERs are approximate since they were taken
from charts).

This use of MLLR on pooled groups of speakers was taken up for a German-accented
English task by Wang, Schultz, and Waibel (2003). As discussed above, they studied German-
accented English speakers in the VERBMOBIL (conversational meeting planning) task. They
pooled 64 speakers, and applied MLLR on various amounts of this data. They showed that us-
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ing MLLR on 7 minutes of adaptation data from 64 speakers, brings a drop in WER of ap-
proximately 1.5% absolute (from approximately 49.5% to approximately 46.8%). Unlike the
Japanese-accented baseline discussed above, their baseline system does not seem to have used
MLLR, so some of this 1.5% might be equally achieved by MLLR on the test speaker. Us-
ing very large amounts of adaptation data (50 minutes) for MLLR, the WER decreased approxi-
mately 4.5% to approximately 44.0%. Both the Mayfield Tomokiyo and Waibel (2001) Japanese-
accented English and the Wang, Schultz, and Waibel (2003) German-accented English study on-
ly used a single MLLR transformation matrix, while Huang et al. (2000) used 65 separate trans-
forms. This may explain the relatively small improvement Mayfield Tomokiyo and Waibel (2001)
and Wang, Schultz, and Waibel (2003) achieved, even when using much more adaptation data, com-
pared to Huang et al. (2000). Similarly, Goronzy, Sahakyan, and Wokure (2001) used only one
MLLR regression class for German and Italian speakers of English and found that while perfor-
mance improved on 3 out of 12 speakers in the test set, it declined for 9 out of 12 speakers! This
suggests that training multiple transforms are quite important when doing adaptation to accent-
ed speech. But the comparision is not clear, because Mayfield Tomokiyo and Waibel (2001) used
speaker-dependent MLLR as their baseline when evaluating MLLR adpatation to a class of accented
speakers. Huang et al. (2000) only report the standard use of MLLR on individual test speakers. In
essence, then the Huang et al. (2000) baseline was set artificially low, for some reason, turning off
the MLLR that their standard system otherwise used.

Another widely used acoustic adaptation method that has been applied to accented speech is
MAP adaptation. In MAP estimation, the estimate of the gaussian means for each model is formed
by a weighted average of the training means and the adaptation data means. If there is insufficient
adaptation data for a model, the training mean alone is used. On the German-accented English task
described above, Wang, Schultz, and Waibel (2003) separately tested both MLLR and MAP adap-
tation. With large amounts of adapatation date (more than 20 minutes) they found MAP better at
decreasing WER than MLLR. For example, using all 52 minutes of accented data from 64 speak-
ers, MAP estimation reduced error rates from approximately 49.5% to approximately 38%, while
MLLR only reduced WER to 44%. They did not attempt to combine MAP and MLLR.

Finally a number of researchers have attempted to apply other acoustic adaptation methods to
accented speech. A number of researchers, for example, explore the use of L1, the native lan-
guage of these accented speakers, as a source of acoustic training data (Liu and Fung, 2000; May-
field Tomokiyo and Waibel, 2001; Wang, Schultz, and Waibel, 2003). (In our task, for example,
L1 would be Shanghainese). Other researchers have explored other models, such as using the Poly-
phone Decision Tree Specialization (PDTS) method of modifying the decision tree used to cluster
context-dependent phone models (Wang, Schultz, and Waibel, 2003).

In summary, previous research suggests that MLLR can be used on groups of speakers to help
adapt acoustic models to foreign accent. Previous applications of MLLR in this multi-speaker adap-
tation environment, however, have been limited to a single global transform. Previous research has
shown, not surprisingly, that MAP performs better than MLLR with enough training data. But pre-
vious research has not shown whether combining MAP and MLLR could be useful for adaptation
specifically to accented data. This state of the art suggests a few goals for the acoustic adaptation
portion of our work. First, we need to explore the usefulness of more complex uses of MLLR, in-
volving more specific transforms rather than a single global transform. Second, we need to explore
combinations of MLLR and MAP as applied to the accent problem.
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2.1.2 Lexicon Adaptation to Accent

In addition to acoustic adapatation, many researchers have studied the role of lexicon adapatation
to deal with accented speakers. By lexicon adaptation, we mean modification of the pronunciation
dictionary to have accent-specific pronunciations. For speech recognition in general, lexicon adap-
tation has shown much smaller gains than acoustic adaptation. Some researchers, however, have
argued that accented speech is a particularly appropriate task for pronunciation modeling to help
(Goronzy, Sahakyan, and Wokure, 2001).

In general, research on lexicon adaptation has focused on augmenting or modifying the base
lexicon to have accent-appropriate pronunciations. In what might be called the ‘standard approach’
to pronunciation modeling, pronunciation variants are created to add to the dictionary. These pro-
nunciations may be written by hand, extracted by hand from phonetically transcribed corpora, ex-
tracting automatically from corpora for example by running a phone recognizer, or generated by
rule from previous pronunciations. If a training corpus is available, the resulting expanded lexicon
is generally then force-aligned with the training set to learn pronunciation probabilities. Finally, the
pronunciations are pruned in some way to result in a relatively small number of pronunciations per
word (usually on the order of 1.4).

Probably the most successful class of methods for building an augmented accented lexicon has
been to use accented training data to learn a set of rules, mapping, or phone confusions which are
then used to augment the dictionary.

(Humphries, Woodland, and Pearce, 1997) was one of the earliest applications of lexicon adap-
tation to accent modeling, specifically adapting a standard (London and South East England) lexi-
con to improve recognition of Lancashire and Yorkshire accented English. Their goal was to build
phone-confusion decision trees, which would expand the standard lexicon with accented pronun-
ciation variants. They first generated a phonetic transcription of the accented data, by taking the
canonical lexicon, and building an augmented lexicon in which each vowel could to be replaced
by any other vowel. (On the assumption that most accent pronunciation variation takes place on-
ly in the vowel, and the simplifying assumption that only phone substitutions, and not insertions
and deletions, would occur. They then force-aligned the training set using this expanded lexicon,
producing a phonetic transcription. This transcription of the accented data was then aligned with a
canonical dictionary transcription. The resulting phone alignment was then used to train a (pruned)
decision tree to map unaccented phones into accented phones. This decision tree was then applied to
the canonical dictionary to produce additional accented pronunciations for each word. The resulting
dictionary, with the optimal decision tree pruning threshold, reduced WER from 17.2% to 13.9%
on the accented test data.

(Livescu and Glass, 2003) explored the use of lexicon augmentation for the JUPITER system.
In their system, there were many different accented speakers, but there were not enough of each
type to train accent-specific lexicons. They therefore built a single ’non-native-speaker’ lexicon.
Like (Humphries, Woodland, and Pearce, 1997), their idea was to induce native-to-accented phone
mappings from a training set, and use these mappings to expand the native lexicon with alternative
accented pronunciations. Their method was first to run a phone recognizer on the mixed accented
training data, constrained by a phone bigram language model. They then aligned this phone tran-
scription with the canonical (native) pronunciations from a native dictionary, and used this aligned
corpus to learn a set of phone confusions. They then pruned this confusion matrix, and used the
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pruned phone confusions to expand each pronunciation in the canonical dictionary. They then took
this augmented canonical dictionary, force-aligned it to the training set, took the single best best
pronunciation path for each training sentence, and build a smaller, more constrainted phone con-
fusion matrix. This phone confusion matrix achieved The baseline system had achieved WER of
20.9% on non-native data and WER of 10.5% on native data; using the phone confusion matrix
reduced the WER on non-native data to 18.8%.

(Huang et al., 2000) applied a very similar method to the problem of Shanghainese-accented
Mandarin. They ran a syllable-recognizer on an accented training set, producing an accented sylla-
ble labeling. They then aligned these accented labels with the canonical (standard Mandarin) labels,
to produce a set of accented-to-standard syllable transformation pairs. They used 37 such transfor-
mation pairs to augment their standard (native) Putonghua dictionary with new pronunciations. In
addition, they trained transformation probabilities for each of these transforms to generate a proba-
bility for each of these new pronunciations. The resulting expanded lexicon reduced syllable error
rate from 23.18% to 19.96%. The lexicon was not as useful when combined with MLLR, however;
with a baseline system using 10 sentences of MLLR, the lexicon only reduced syllable error rate
from 21.48% to 21.12%.

(Mayfield, 2002) explored the problem of Japanese-accented English that she had already begun
to address in (Mayfield Tomokiyo, 2000) and (Mayfield Tomokiyo and Waibel, 2001). Her genre
in this case was read speech; she created her database by choosing Japanese speakers with low pro-
ficiency in English and having them read aloud from the Children’s News Database. In (Mayfield,
2002) she attempted a number of ways to augment the lexicon with Japanese-accented pronunci-
ations. In the first class of methods, she wrote linguistic rules, used them to expand her lexicon,
producing a large list of 915,672 pronunciation variants. She then aligned this expanded lexicon
to an accented training set. From the aligned data, she either selected frequent pronunciations to
directly augment the lexicon, or frequent phone-transforms to apply to the lexicon to create new pro-
nunciations; each of these ways of using the forced alignments was pruned in various ways. In the
second class of methods, she used a phone recognizer on the training data to bootstrap the process
rather than hand-written rules. She aligned the phone recognizer output with the dictionary output
to learn context-independent phone transforms, and applied them, with various prunings, to the lex-
icon. (Mayfield, 2002) found that none of these methods improved recognition performance. She
hypothesized that read speech might be a bad database to use for lexicon adaptation experiments,
because speakers often didn’t know the words, and so stumbled over them rather than reading them
with a standard phonological accent.

(Goronzy, Sahakyan, and Wokure, 2001) looked at German and Italian speakers of English in
the ISLE corpus. They phonetically transcribed part of the speech, and used the aligned phonetic
transcriptions in two ways. In the first experiment, they added frequently occuring pronunciations to
the lexicon. This showed very little improvement in WER. In the second experiment, they used the
corpus as a tool for hand-writing phonological rules, rules such as word-final devoicing, /h/-deletion,
schwa-epenthesis, and various other phone substitutions. These rules were then used to expand the
native-English dictionary. They found that the expanded dictionary actually increased the WER!
In a final experiment, however, they instead built oracle-based speaker-specific lexicons. For these,
they looked at the test set for each speaker, and from the large set of phonetic rules discussed above
just those rules that decreased WER for the speaker. They then applied these rules to build separate
speaker-specific dictionaries for each speaker. The resulting oracle dictionaries gave a few percent
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absolute WER improvement on each speaker, even after MLLR adaptation.
In summary, lexicon adaptation does appear to offer some help in reducing WER on accented

speech, although the reductions are modest and sometimes go away when enough data is available
for acoustic adaptation via MLLR. Thus lexicon adaptation may be particularly applicable in situ-
ations where speakers are only uttering a single sentence, and acoustic adaptation is not possible.
In addition, the work of (Goronzy, Sahakyan, and Wokure, 2001) suggests that speaker-specific
pronunciation modeling, when possible, may be a useful tool.

2.1.3 Accent Detection

Various features have been used to build accent detectors. Chen et al. (2001) built an detector which
disinguished between four different Chinese accents in Putonghua: native speakers from Shanghai,
Guangdong, Beijing, and Taiwan. They trained GMMs for each accent, one for females, one for
males. They used standard MFCC features, and 32 component Gaussians. They achieved error
rates of 11.7 for females and 15.5 for males. They noted that a weakness of the GMM method is its
sensitivity to channel characteristics.

Teixeira et al. (2001) built decision trees to detect the level of accent of Japanese-accented
speakers of English. Their features included basic features such as rate of speech, as well as
prosodic features like the duration of the primary stressed vowel, durations of words, durations
of intra-sentence pauses, maximum F0 excursion, and various normalizations of these features.
They assumed correct gender was given. They achieved an error rate of 14.5% compared to human
labelers of the accent levels.

(Schultz et al., 2002) suggest that the GMM approach to accent recognition may be too depen-
dent on matched acoustic conditions between training and test. Since in a real environment such
conditions are unlikely to match, they propose a new approach for accent detection based on phone
strings. Their approach is based on using phonotactic information; phone transition probabilities
generated from phone recognizers. The idea is that native speakers will have different phone n-
gram probabilities than accented speakers. In order to make the phone n-gram probabilities more
fine-grained, they actually use phone recognizers from 6 different languages. The procedure is as
follows. First, they created training and test sets of Japanese-accented English and native English.
Next, the 6 phone recognizers were run on the 2 training sets, generating 6 sets of phone output and
6 sets of phone N -gram grammars, one set for native English and one set for Japanese-accented En-
glish. In decoding, each test sentence is run through the two sets of 6 phone recognizers, generating
6 perplexities. These are interpolated to produce a perplexity for native English and a perplexity for
Japanese-accented English; the lower perplexity model is chosen as the accent detected for the test
speaker. They achieved 93.7% accuracy at the accent identification task. They also attempted to
use this method to label the strength of accent, by labeling each Japanese-accented speaker for their
proficiency in English. The phonotactic approach fared worse at this more difficult task of distin-
guishing between 3 different classes of accents, accuracy on 3-way classification ranging form 34%
to 59%.

In summary, previous approaches to accent detection have employed GMMs trained on acous-
tics, or phonotactic probabilities based on phone recognition. We investigated both of these methods
on our Shanghainese-accented Putonghua task.
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Labials Apicals Apical Sibilants Retroflex Pal. Vel.
Unasp. p t ts t � t � k
Asp. ph th tsh t � h t � h kh
Nas. m n �
Fric. f s � � x
Son. w l � j

Table 1: Putonghua Initials, after (Norman, 1988).

�z/ � � ��� A ei ae o � 	 o 
 n an ��� 	�� 
 r
i i 
 iA io � i 	 o in i 
 n i � i 	��
u uo uA ueI uae u 
 n uan ��� u 	��
y y 
 yIn yan y � n

Table 2: Putonghua Finals, after (Norman, 1988).

2.2 Shanghainese and Wu-accented Putonghua

In this section we summarize some of the phonetic and phonological characteristics of Shanghainese
and Wu-accented Putonghua. Shanghainese is quite different from Mandarin, particularly in the area
of phonology. These differences presumably affect the speech of Shanghainese speakers speaking
Putonghua. Key phonological differences are the following. Mandarin, and hence Putonghua, is
typical of many Chinese languages in only having two kinds of stops, namely voiceless unaspirated
and voiceless aspirated. In contrast Wu dialects are characterized by a three-way contrast, namely
unaspirated voiceless, aspirated voiceless and voiced. Mandarin has lost all syllable final consonants
except /n/ and / � /, and Wu dialects similarly have lost most final consonants, except / � /, a residue of
historical final stops, and final / � /. The two final consonants are restricted in their distribution, only
occurring after /i/, / 
 /, /a/, /u/, /o/ and / � / (Norman, 1988, page 201).

Wu dialects have a much wider range of simple vowels than Mandarin, including low front
rounded vowels. On the other hand, Mandarin dialects have diphthongs, which many Wu dialects,
including Shanghainese, lack. See Tables 1–2 and 3–4 for charts of the segments of Mandarin and
Shanghai.

A Wu accent in Putonghua is characterized by two factors. The first is the underlying Wu lan-
guage, which in the heaviest accented speakers can have a strong influence on the pronunciation
of Putonghua: such speakers may substitute Wu vowels for Putonghua ones, use voiced conso-
nants, and produce syllables ending in / � /. The second is the general properties of Southern Man-
darin, characterized by a bevy of sound changes including the substitution of retroflex fricatives
and affricates (Pinyin sh, ch, zh) with the corresponding non-retroflex sounds (s, c, z), and the
neutralization (merger) of final n and ng to ng following i. This is characteristic of speakers of
Mandarin/Putonghua throughout the South including Taiwan. But, again, these characteristics are
not categorical and speakers may exhibit them to greater or lesser extent.

In addition to these Wu accented issues, of course, our corpus exhibits examples of spontaneous
or fast speech phenomena that exist in the speech of people from any region. In Putonghua, as in
other languages, these include deletions of segments, such as the initials of syllables in prosodically
weak environments. There is a common misconception that Chinese syllables are somehow more
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Lab. Dent. Alv. Sib. Pal. Vel. Glot.
Unasp. Stops p t ts t � k
Asp. Stops ph th tsh t � h kh
Vcd. Stops b d d � g
UnVcd. Fric f s � h
Vcd. Fric v z �

�

Nas. m n � �
Liq. w l j

Table 3: Shanghai Initials, after (Norman, 1988).

Front Central Back
High i y u
Upper Mid e ø o
Lower Mid 
 
�� �
Low a

Table 4: Shanghai Vowels, after (Norman, 1988).

“robust” than syllables in languages like English. Thus, Huang et al. (2000) have stated that “dele-
tion errors are infrequent in Mandarin because of the strict syllable structure.” This is false however:
a careful study of even a small corpus such as that reported in (Sproat and Shih, 2001) reveals that
deletions are quite common in spontaneous speech. Thus in that corpus, out of 708 lexical segments
113, or 16% are changed, and of these 46 (40%) involve deletions. Similar percentages of deletions
are found in our Wu speaker data.

Naturally, for any system to work well on spontaneous speech of any kind, it must be able to deal
with any kind of phonetic change, both the kind due to the Wu regional accent as well as these ‘fast
speech’ phenomena. Since this project specifically addresses in the problem of accented speech,
however, our attention will be focussed only on the regional changes.

3 The Wu-accented Putonghua Corpus: Data Collection and Tran-
scription

The Wu-accented Putonghua Corpus was designed to give a good cross-section of accented Pu-
tonghua spoken by native speakers of Shanghainese (or in a few cases, speakers of other Wu lan-
guaages). Data were collected from 100 speakers, 50 male and 50 female, in four locations in
Shanghai. The four locations were a junior high school, a government bureau, a factory, and a
postal research academy. In each location, a local coordinator was chosen who selected the 25
speakers from that location. Coordinators were given constraints in selecting subjects, so as to
achieve a balance of age, education level, and Putonghua skills. (See Appendix A for details on the
100 speakers.)

Both spontaneous speech and read speech was collected from each speaker. The read speech
comprised about 3 minutes for each speaker, and speakers read from text prepared by the exper-
imenters. There were 65 different sentences used for the read speech, with each speaker reading
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Table 5: Age distribution of speakers.

Table 6: Education levels of speakers.

different sentences. A few commonly used Shanghainese words were inserted into the read sen-
tences, so as to have some examples of the pronunciation of such code-switched words. A sample
of the read sentences:������������	�
��
���
���
���

“Thailand Security Council secretary Zhang Zhalan said”
Spontaneous speech consisted of free form monologues where the speaker was asked to discuss

anything they wished in one of the following areas: sports, policy/economy, entertainment, lifestyles
or technology. Monologues were recorded in a room with an experimenter. All in all there were two
experimenters, neither from Shanghai; one was co-author Li Jing. Occasionally the experimenter
would prompt the speaker with questions. The total amount of spontaneous speech for each speaker
averaged about 5 minutes. Speech was recorded using two similar head-mounted microphones:
SONY OEM headset microphone; ANDREA Anti-Noise NC-61. The experimenters sat in the
same room as the speakers, but sat a couple meters away from the microphone.�����������������������

“Hua Temple — Longhua Temple, how did it come about, right?”
Speakers were classified by experts at the Chinese Academy of Social Sciences ( � ��� � ! "#

CASS) into “Putonghua Level” (PTH Level) and fluency in Putonghua. Putonghua level ranges
from 1 (best) to 3 (worst), with subdivisions A (better) and B (worse); all of our speakers fall in the
range 2A-3B. Speakers were assigned fluency on a two point scale, i.e. fluent or not fluent.

In sum, the corpus contains 8.3 hours of spontaneous speech and 5 hours of read speech.
Spontaneous speech data was transcribed into 3 main tiers and a fourth miscellaneous tier. The

Orthographic tier contains an orthographic transcription of the entire conversation in Chinese char-
acters (‘hanzi’). In addition to these normal orthographic conventions of Chinese orthography, 25
special markers were used in this tier to indicate non-lexical phenomena, including breaths, laughter,
silence, lip smacks, beeps, noises, and so on.

The Pinyin tier contained the canonical dictionary pronunciation of each word in the conversa-
tion, using the Pinyin alphabet and drawn from a standard dictionary. Finally, there was a Phonetic
surface form tier, containing a phonetic transcription of the entire conversation. This transcription



Dialectal Chinese Speech Recognition: Final Report. 12

was done by phoneticians at the Institute of Linguistics at the Chinese Academy of Social Sciences,
led by Aijun Li and Xiaoxia Chen. This phonetic transcription was hand-aligned to the speech
waveform using the Praat editor.

Phonetic transcriptions were done in terms of “initial-final” (IF) units, where initials are the
initial obstruents of syllables, and finals are the remainder of the syllable, consisting of an optional
on-glide, the vowel nucleus, and an optional (nasal) coda. To illustrate this, the syllable guang
would consist of an initial g and final uang; for dou the initial would be d and the final the vowel
ou; finally for wang there would be no initial, just the final wang (identical to the final uang in
guang). While it would be perfectly possible to transcribe Putonghua in terms of segments, as is
typically done in English, most Chinese speech recognizers, including the recognizers we used in
our experiments, are based on IF units. From the point of view of acoustic modeling there may
in any case be some advantage in doing this since the longer finals incorporate more context than
segmental units would.

The transcription alphabet was created by combining two separate IF sets. One was a set of 61
IFs used to represent standard Putonghua.1 In addition to these 61 IFs, a large number of other IFs
were added to capture the Shanghainese influence on the phonetics. These IFs were drawn from the
set of IFs used for the Shanghai Dialect.

In addition, a number of extra diacritics were used to mark more detailed aspects the phonetic
transcription, including markers for syllable-final retroflexion (“ r”), voicing due to coarticulation
(“ v”), and 3rd tone sandhi. Details on the phonetic transcriptions are given in Appendix B.

It was decided during the later preworkshop preparations that we would focus primarily on
spontaneous speech so the bulk of the remaining discussion deals with spontaneous speech only.
However, the read speech data has been used in some of the initial linguistic analysis as well as in
training models for age and PTH level detection.

4 Preliminary Linguistic Analysis of the Data

Before designing our ASR experiments, we began by conducting a linguistic analysis of the accent-
ed speech data. This analysis was conducted by Rebecca Starr and Dan Jurafsky at Stanford.

We first examined the phonological characteristics of the Shanghainese-accented Putonghua
data. Shanghainese-accented Putonghua (as a Southern dialect of Mandarin) is well-known to have
a number of phonological idiosyncracies. The most well-known is the fronting of retroflex fricatives
and affricates, resulting in the following three phonological changes:

• sh → s

• ch → c

• zh → z

Table 7 shows these common pronunciation phenomena.
In addition, Shanghainese Putonghua shows changes in the final nasal consonants. Final [in]

and [ing] are merged or in some sort of variation, and final [eng] is pronounced [en].
160 of these 61 IFs are used also in the Mandarin (Standard Putonghua) recognizers used at Hopkins that we used as

our recognition testbed, to be described below. These were the 60 context-independent IFs on which context-dependent
models are built.
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Standard PTH Shanghai Accent

shan ( � ) san ‘mountain’
chan ( � ) can ‘cicada’
zhuozi ( ��� ) zuozi ’table’

Table 7: Southern accent: fronting of [sh]/[ch]/[zh] to s/c/z

• eng → en

• in ↔ ing

Because the nasal vowel differences were subtle and difficult to code accurately, we chose to inves-
tigate the three cases of fronted retroflexes, [sh], [zh], and [ch]. We examined every case of [sh],
[zh], [ch], and [s], [z], and [c] in the entire corpus. All in all, there were 19,662 tokens of sh/zh/ch.
We performed a number of analyses on sh/zh/ch, using the results as a window into Shanghainese
accent in general. We discuss the most relevant of the analyses here.

First, we coded each observation of sh/zh/ch/s/z/c for a number of features:

• Did they turn into s/z/c?

• age of speaker

• sex of speaker

• education level of speaker

• phone identity (sh, zh, or ch?)

• phonetic context.

We then performed a series of logistic regression experiments to determine which of these factors
affected the fronting of [sh]/[zh]/[ch] to [s]/[z][c].

A first general result of our analysis is that there is massive variation between speakers in their
use of standard PTH sh/zh/ch versus Shanghainese-accented s/z/c. Different speakers ranged from
0 to 100% use of the standard phones, as shown in Figure 2.

The massive variation in fronting confirms that accent is a continuous phenomenon, with differ-
ent accented speakers showing different degrees of change. Even within this single type of sound
change (fronting), some speakers showg the change consistently, others never show it, and still
others show it to intermediate degrees.

In general, we found that each of the variable we examined played a significant role in predicting
the amount of fronting (s/z/c) that occurred. One of the strongest variables was age. Figure 3 plots
the degree of fronting (the percentage of cases where, say sh is changed into s) against age. Older
speakers tend to have higher degrees of fronting, i.e., they tend to have a stronger accent. (We
also observe in this plot that speakers tend to show somewhat less fronting in reading, which is not
surprising given that reading aloud is a normative task.)

We found similar results for education; the more educated a speaker was, the more standard
was his/her Putonghua. Or, to rephrase, less educated speakers had a stronger Shanghainese accent.
Details are shown in Figure 4.
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Figure 2: Variation among speakers in their fronting of sh, ch, zh to s, c, and z. The x-axis indicates bins of percentage
use of the (northern) standard PTH sh/ch/zh, while the y-axis indicates the number of speakers in each bin.

Women spoke slightly more standardly than man. Details are shown in Figure 5.
We found very little effect of phonetic context on fronting (Southern accent). Only one of the

many finals (rimes) in Chinese showed any affect, which was the vowel [an]. Initial sh/ch/zh was
more fronted (more Southern) when followed by the final [an]. This is likely to be because [an] is
the only front final that can follow sh/ch/zh. Table /reftab:phoneeffect gives an example of more
fronting before [an].

%s %sh

shang 725 .67 314 .33
shan 155 .75 51 .25

Table 8: [sh] more likely to become [s] before [an] than [ang].

We also found different values of fronting (Southern accent) for the different phones
[sh]/[ch]/[zh] themselves. [sh] was more likely to be fronted (Southern) than [zh] or [ch] Details are
shown in Figure 6.

We noted a wide variety of hypercorrections in our data. A hypercorrection is a kind of over-
application by a speaker of a rule. The fact that southern-accented speakers use [s/c/z] for standard
Putonghua [sh/ch/zh] is known by many Southern speakers. Speakers who know that Southern
[s] corresponds to standard PTH [sh], in an attempt to simulate the standard pronunciation, will
pronounce [s] as [sh] even in words that have [s] (not [sh]) in standard PTH. In the following
sentence, for example, the standard PTH word su4du, ‘speed’, is incorrectly pronounced shu4du4
by a speaker who is hypercorrecting.

�������������

shu4du4 dou1 shi4 hen3 kuai4 de0
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Figure 3: Total fronting of sh, ch, zh as a function of age. Older speakers show more fronting (Southern accent) than
younger speakers.

The speed was still quite fast.

We measured hypercorrection in two ways. From a production perspective, we measured the
percentage of standard [s], [z], and [c] that are produced as [sh], [zh], and [ch]. From a recognition
perspective, we measured the percentage of the [sh], [zh], and [ch] that are produced by the speaker
that would be [s], [z], and [c] in standard Putonghua. The example above has 100% production
hypercorrection, and 50% recognition hypercorrection. We measured hypercorrection only in the
read speech, since a preliminary analysis found that hypercorrection was much more common in
read speech than spontaneous speech. Note that this is the opposite of fronting, which occured more
often in spotaneous speech than read speech.

Figure 7 shows the percentage of hypercorrection from the production perspective. Figure 8
shows the percentage of hypercorrection from the recognition perspective.

Finally, we looked at the relation between fronting and the hand-labeled PTH fluency score.
Figure 9 shows the three fronting rules, in read versus spontaeous speech. For each of the 3 rules,
we show the relation between percentage fronting and PTH fluency score. The percentage of [sh]
which become [s] in read speech turns out to correlate the most strongly with PTH fluency.

In summary, we reached four conclusions from our analysis. First, there was massive variation
between speakers in the amount of accent severity. This suggests that accent modeling needs to
be continuous rather than binary, and we will need to model the graded nature of accent severity.
Second, age and education are good predictors of standard speech. This suggests that we can use
age-type features to predict accent severity. Third, we found that the more speakers used [s] for
[sh], the more accented they were. That suggests that the relative counts of [s] versus [sh] might
provide us with another measure of accent severity. Finally, Shanghainese accented PTH does have
clear phonological transformations from standard PTH. This suggests that traditional pronunciation
modeling is worth investigating in this domain.
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Figure 4: Total fronting of sh, ch, zh as a function of education. Less educated speakers show more fronting (Southern
accent) than more educated speakers.

5 Data Division

We selected a total of 20 speakers (10 male, 10 female) for the test speakers, comprising a total
of 1.7 hours of speech. The remaining 80 speakers (6.3 hours) were used for development data.
The test speakers were selected with the goal of having an evenly balanced set of strongly accented
and more standard speakers. The more strongly accented speakers have a PTH level designation
of 3, whereas the more standard speakers have a PTH level designation of 2. The status of the
test speakers as either more accented or more standard was verified by listening by native speaker
project team members. The exact breakdown of the 20 test speakers into their CASS PTH level
designations is as follows:

# Speakers CASS Designation Our Classification
7 2B more standard
3 2A more standard
6 3B more accented
4 3A more accented

Further details of the test speakers are given in Table 9. Details of all 100 speakers are given in
Appendix A.

6 Baseline system

A word bigram language model is used throughout all the experiments in this paper. The test and
training corpora were segmented using a maximum matching algorithm using a fixed dictionary
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Figure 5: Total fronting of sh, ch, zh as a function of gender. Men show slightly more fronting (Southern accent) than
women.

consisting of 50,647 entries developed at Tsinghua University. Language model training corpora
consisted of the following conversational Putonghua data with 1.22 million characters:

• Mandarin HUB5 (200 telephone conversations of up to 30 minutes each)

• 100 hours of conversational Putonghua speech collected by Hong Kong University of Science
and Technology.

• The transcriptions from the 6.3 hours of training data from our Wu-accented speech corpus.

Standard MFCC-based acoustic models with 14 mixtures per state were constructed using HTK
version 3.2 (Young et al., 2002). Two baseline acoustic model training sets were used:

• MBN: 1997 Mandarin Broadcast News corpus (Hub-4NE), consisting of 30 hours of speech
from mostly trained speakers.

• WU: 6.3 hours of Wu-accented training data.

The MBN data was chosen since it matches our data in one respect, namely that it is wideband
recording. Table 25 shows the baseline results for the two acoustic models; here and elsewhere,
we report results in terms of Character Error Rate (CER), which is the standard measure of perfor-
mance in Chinese speech recognition.
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Figure 6: Total fronting of sh, ch, zh. sh has less fronting.

6.1 Language Modeling

Language modeling was not a major focus of the work in this project since it was clear from the
outset that there was little grammatical difference between the speech of the Wu-accented speakers
and what one would expect to find among more standard speakers. One might have imagined that
speakers would use Shanghainese grammatical constructions or Shanghainese-influenced lexical
items (such as huānxı̌ for standard xı̌huān ‘like’), but in fact there were few convincing cases.

We used the AT&T FSM ((Mohri, Pereira, and Riley, 1998), http://www.research.
att.com/sw/tools/fsm) and GRM ((Mohri, 2001), http://www.research.att.
com/sw/tools/grm) toolkit to construct a word bigram language model using Katz discount-
ing. The test and training corpora were segmented using a maximum matching algorithm using a
fixed dictionary consisting of 50,647 entries developed at Tsinghua University. Training corpora
consisted of the following conversational Putonghua data:

• Mandarin HUB5 http://wave.ldc.upenn.edu/Catalog/CatalogEntry.
jsp?catalogId=LDC98S69 (200 telephone conversations of up to 30 minutes each)

• 100 hours of conversational Putonghua speech collected by Hong Kong University of Science
and Technology.

• The transcriptions from the 6.3 hours of training data from our Wu-accented speech corpus.

Due to implementational differences between different language modeling toolkits and what
particular parameters each system supports we did some quick perplexity comparisons between
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Figure 7: Hypercorrection in read speech: production perspective

the language models produced in the way just described, with equivalent language models built
on the same data using the SRI language model toolkit (http://www.speech.sri.com/
projects/srilm/). The differences between the two were minimal.

Slight differences in perplexity depending upon the dictionaries used for segmentation prompted
the work on minimal perplexity Chinese word segmentation that was begun during this workshop
and discussed in a later section.

6.2 Acoustic Modeling

Standard MFCC-based acoustic models with 14 mixtures per state were constructed using HTK
version 3.2 (Young et al., 2002). Two baseline acoustic model training sets were used:

• MBN: 1997 Mandarin Broadcast News corpus (Hub-4NE) http://wave.ldc.upenn.
edu/Catalog/CatalogEntry.jsp?catalogId=LDC98S73, consisting of 30
hours of speech from mostly trained speakers.

• WUDEVTRAIN: the 6.3 hours of Wu-accented training data.

The MBN data was chosen since it matches our data in one respect, namely that it is wideband
recording. However it differs in important respect in that the topics are quite different, the style of
language is different (since newsreaders are reading from prepared text) and the kinds of phonetic
reductions one finds in conversational speech are much less prevalent.2

2Experiments were tried with using Mandarin Hub5 telephone speech. This required downsampling and speaker
normalization (cepstral means and variances) of the Wu data. In principle this might provide a better baseline than MBN
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Figure 8: Hypercorrection in read speech: recognition perspective

6.3 AT&T Speech Recognition Tools

The AT&T approach to ASR based on weighted finite state transducers has been described exten-
sively elsewhere—e.g. (Mohri, Pereira, and Riley, 2002)—and will only be briefly summarized
here.

The basic idea behind the approach is that the problem of speech recognition can be cast in
terms of rational transductions over strings. Given an acoustic model output in terms of weighted
sequences of states of an acoustic model, typically representing possible sequences of triphones, one
wishes to map between that sequence and a sequence of words, which is the output of the recognizer.
This can be broken down into a set of mappings. The first of these, called the Context (C) transducer
maps between HMM state sequences and sequences of phones. The second, the Lexicon (L) maps
between sequences of phones and sequences of possible words. Finally, the Grammar (G), is a
weighted finite-state acceptor that represents the language model for the task. One combines these
three components by composition (notated ◦) so that during recognition one runs with the transducer
C ◦L◦G (the “CLG” transducer). Note that since weighted finite-state transducers are closed under
composition CLG is guaranteed to be a weighted finite-state transducer. Also, since transducers
are closed under inversion one can construct the transducers to map in whichever direction seems
more natural, since the result can always be inverted; thus it is more natural to think of a lexicon
as mapping from words in their standard orthographic representation into (a set of) pronunciations,
so one can construct the L transducer in that direction and then invert the result. Generally, during
construction of the CLG one performs various optimizations including local determinizations and
symbol pushing, and one indexes the result to allow the input labels to be looked up efficiently: see

since it is conversational speech and both the style and the topics discussed would in principle more closely match our
data. In practice however we were unable to show any improvement over the MBN baseline using this approach.
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Figure 9: Comparison of fronting percentages with PTH score.

(Mohri, Pereira, and Riley, 2002) for details.
The AT&T recognizer drecog (available at http://www.research.att.com/sw/

tools/dcd) uses the above CLG model during decoding, along with an acoustic model. In the set
up at Johns Hopkins HTK acoustic models are used, and are converted at runtime to AT&T BLASR
format. The details of the acoustic model and parameters to control aspects of the decoding such as
the beam width, language model weight, and so forth are controlled by a parameter file. A typical
example is given in Figure 10.

6.4 Baseline Results

The overall results for the MBN and WUDEVTRAIN baselines are given in Table 11. Here and
henceforth all results will be reported in terms of Character Error Rates (CER).

7 Oracle Experiments

7.1 Lexicon Adaptation Oracles

A good oracle experiment for lexicon modeling is to assume that we know exactly which pronun-
ciations the speaker would use for the words they utter and replace those words in the lexicon
with the pronunciations that were actually used. We tried two approaches to this. One was to use
the hand transcribed pronunciations and the other was to derive the pronunciations from forced
alignment using a dictionary modified to allow for selected sound changes. In the latter case we
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Speaker ID Gender Age Education PTH Fluency Rec. Loc. Rec. Mic.
008 Male 26 UG 2A Yes 1 2
009 Male 35 UG 2B Yes 1 1
011 Male 30 UG 2B Yes 2.1 2
012 Male 34 UG 2B Yes 2.1 1
016 Male 26 JC 2B Yes 2.2 1
032 Male 34 UG 3B Yes 4 1
035 Male 36 JC 3B Yes 2.2 1
043 Male 44 UG 3A Yes 4 1
046 Male 50 SHS 3A Yes 2.1 2
047 Male 40 SHS 3A No 3 1
053 Female 45 TSS 3B Yes 3 1
054 Female 45 TSS 2B Yes 3 2
059 Female 40 SHS 3B Yes 1 1
061 Female 30 UG 2B Yes 2.1 2
064 Female 34 UG 2B Yes 2.1 1
066 Female 26 UG 2A Yes 2.1 2
067 Female 33 UG 2A Yes 2.1 2
076 Female 41 UG 3B Yes 1 1
098 Female 41 SHS 3A Yes 3 1
099 Female 41 JC 3B Yes 3 2

Table 9: Details of the test speakers. See Appendix A for an explanation of the codes.

AM Training Corpus Data Size # of tied-states CER (%)
MBN 30 hours 5797 61.0
WU 6.3 hours 1334 44.2

Table 10: Performance of baseline acoustic models (AM) trained on MBN and WU corpus, respectively

focussed on the three fronting rules involving sh, zh and ch and the velarization of in to ing; the
latter were implemented using the lextools package (http://www.research.att.com/sw/
tools/lextools) and composed with the transducer representing the dictionary; see Figure 11.

In the case of hand transcriptions, all transcriptions for a given test speaker were parsed into
word pronunciations, and the word pronunciations were weighted with MLE probability estimates
given their frequency. They were then replaced into the original baseline dictionary, converting
the probabilities to log probabilities and then scaling so that the most frequent probability had log
probability of 0.0; this is necessary since otherwise any word for which we have weighted multiple
pronunciation will automatically be penalized relative to other words for which we have a single
(free) pronunciation.

In the case of forced alignment, the original dictionary was composed with the rules in Figure 11
and used to build a CLG which was then composed with the actual transcription T for each test
utterance (C ◦ L ◦ G ◦ T ). These combined FST’s were then used to “decode” the sentence. The
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fsms /home/yzheng/ws04/research/casr/eval/models/hmm144/att_728/SCLG.fsm
model_type htk
model /home/yzheng/ws04/research/casr/eval/models/hmm144/att_728/att.mmf
htk_hmmlist /home/yzheng/ws04/research/casr/eval/models/hmm144/att_728/att.clist
htk_hmmmap /home/yzheng/ws04/research/casr/eval/models/hmm144/att_728/att.hmmmap
beam 14
gram_mult 14
output onebest
segment_level word
lattice_beam 8

Figure 10: A typical drecog parameters file.

MBN CER WUDEVTRAIN CER
61.0 44.2

Table 11: Overall baseline results for MBN and WUDEVTRAIN

cheapest path of the resulting lattice contains the pronunciations for the given utterance most favored
by the recognizer. These pronunciations were then collected and the single best pronunciation for
each word was replaced into the baseline dictionary.

The forced alignment dictionary with a single pronunciation resulted in a 1.4% reduction in
CER over the MBN baseline (61%) over the 20 test speakers; speaker by speaker scores are given
in Table 12. The hand-transcription-derived dictionaries were tested for five speakers and resulted
in either no improvement or a worsening of error rate by as much as 2.3%.

The roughly 1.5% gain for the forced alignment oracle is consistent with previous work, such as
(Huang et al., 2000), that tends to show minimal gains for pronunciation modeling. This result is not
a true upper bound, since our experiment was biased in two ways against a win from pronunciation
modeling. First, we only considered a small set of pronunciation changes, so there would in prin-
ciple be an opportunity for larger gains if more changes were taken into account, (although we did
consider the most important changes). Second, we did not retrain the acoustic models with the new
pronunciations, which is known to be crucial for most pronunciation modeling wins. Nonetheless,
these results might suggest that the maximum gain from pronunciation modeling might not exceed
a few percent.

8 Automatic Identification of Age and PTH Level

As we saw earlier, there is a correlation between degree of accentedness and factors such as age.
This therefore raises the possibility that one might detect age, and then use that as a factor in se-
lecting appropriate models. To the extent that age is expected to correlate with strength of accent in
any dialect region of China, age detection counts as a domain independent method for accentedness
prediction.
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Speaker Oracle CER Baseline CER
008: 63.9 63.9
009: 62.8 63.8
011: 65.3 70.1
012: 59.0 58.9
016: 67.7 67.7
032: 45.3 48.1
035: 57.9 59.3
043: 57.2 58.6
046: 70.1 71.0
047: 71.7 72.2
053: 81.2 84.3
054: 59.7 59.8
059: 66.4 71.8
061: 50.7 51.6
064: 39.7 40.0
066: 48.6 49.7
067: 50.9 50.9
076: 49.4 50.5
098: 73.1 75.1
099: 70.2 73.6
Total: 59.6 61.0

Table 12: Forced alignment oracle lexicon results.
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optional

[sh][iii] -> s[ii] # shi -> si
[zh][iii] -> z[ii] # zhi -> zi
[ch][iii] -> c[ii] # chi -> ci

[sh] -> s / _ ([<sigma>] - [iii])
[zh] -> z / _ ([<sigma>] - [iii])
[ch] -> c / _ ([<sigma>] - [iii])

[in] -> [ing]

Figure 11: Lextools rules used in forced alignment. Handled are the three cases of fronting and the velarization of final
in. Note that special rules are needed for the sequences shi, zhi and chi since in addition to the fronting there is an
obligatory vowel change.

8.1 Age Detection

In previous work Shafran et al. (2003) investigated the automatic detection of age as one of a
number of “voice signatures”. In their data, which consisted of calls from AT&T customers the
actual age of the speakers was not known, but rather assigned by judges into one of three categories:
youth (<25), adult (25–50), senior (>50). Gaussian Mixture Model classifiers using standard Mel
Frequency Cepstral Coefficients plus a normalized f0 were developed. The system performed at
70.2%, where the baseline was 33%.

Our task is harder in that the age range of our speakers is narrower than that of Shafran et
al., and in fact corresponds to their “adult” range, with our youngest speaker being 25 and our
oldest 50. One assumes that part of the reason that the AT&T work achieved good results was that
older speakers often exhibit a significant change in voice quality in their sixties, and the voices of
people significantly under 20 often have not completely matured. Since our speakers were within
a narrower range we divided them into two groups, the younger speakers being under forty and the
older speakers forty and over.

Using the hand annotation for age for the 80 training speakers, we trained three-state HMM’s
with 80 mixtures for the single emitting state, treating each utterance for each speaker as being an
instance of a single “phone”, either older or younger. Two forms of data were used for training and
testing:

• MFCC: Standard 39 component MFCC plus energy.

• MFCC+f0: The above, plus normalized f0. This adds three further features, namely f0, ∆f0
and ∆∆f0. The normalization was computed as in (Ljolje, 2002), whereby: f0norm =

log(f0) − log(f0min).

During testing the utterances were decoded and the older/younger classification was performed,
based on a simple majority of the automatic classifications. Since we have observed statistical
differences between read and spontaneous speech, we did separate training on both read and spon-
taneous speech. We also tested four possible training-testing combinations. The results are given in
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Test: Spontaneous Test: Read
MFCC MFCC+f0 MFCC MFCC+f0

Train: Spontaneous 13 14 14 10
Train: Read 13 12 13 14

Table 13: Results for age detection. The baseline for this task is 11/20.

Test: Spontaneous Test: Read
MFCC MFCC+f0 MFCC MFCC+f0

Train: Spontaneous 12 15 11 10
Train: Read 14 15 15 15

Table 14: Results for PTH-level detection. The baseline for this task is 10/20.

Table 13; note that the baseline for this task is 11/20. The best results were obtained for training on
spontaneous speech with MFCC+f0 and testing on spontaneous speech, for training on read speech
with MFCC+f0 and testing on read speech, and (curiously) training on spontaneous speech with
MFCC and testing on read speech.

To the extent that we are able to detect older versus younger speakers this is potentially useful.
In theory a general age detector could be built that does not depend upon in-dialect data, which could
then be extended to accented speech from other dialect regions. The counter to this presumption is
that since we do not know what features the GMM’s are using in their classification it is possible
that they are picking up on features such as the ratios of /s/ versus /sh/-like sounds, which we know
correlate with age, but which also are clearly dialect-region dependent.

8.2 PTH Level Detection

An identical approach to that used for age detection can be applied to the problem of detecting PTH
level directly. This is a less useful task from the point of view of building a general accentedness
detector since it presumes a corpus hand-labeled with PTH level.

Huang, Chen and Chang (2004) used MFCC-based GMM’s to classify 4 varieties of accented
Putonghua including speakers from Beijing, Guangzhou, Shanghai and Taiwan. Correct identication
ranged from 77.5% for Beijing speakers to 98.5% for Taiwan speakers.

We performed a similar experiment to use GMM models to classify speakers as more accented
versus less accented based on the hand assigned PTH levels 2A–B (more standard) versus 3A–
B (more accented). Once again we compared straight MFCC and MFCC+f0 and once again we
trained on both spontaneous and read speech, testing all four possible combinations of training and
testing. Results are given in Table 14. For MFCC alone there is a quite striking difference between
spontaneous and read speech in that read speech models seem to be “sharper” and more able to
distinguish between PTH levels; more surprisingly, models built on read speech seem to work well
on spontaneous speech, though the reverse does not hold. The differences between spontaneous
speech and read speech are nullified when f0 is added, but read speech models still work well on
spontaneous speech.

One possible explanation for the higher performance of read speech models is that when people
are reading they tend to become more standard in their pronunciation — if they are capable of doing
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so. People who tend to be fairly standard may become more standard during reading, whereas
speakers with heavy accents may simply not be able to overcome their accent even in the more
controlled setting of reading aloud.

9 Automatic Speaker Clustering

A more direct approach to grouping speakers into bins is to compute some measures of individual
speakers, and then use a clustering algorithm to divide the speakers into groups. In our case we are
interested in two groups, more accented and more standard.

Three features that we have shown elsewhere to be related to degree of accentuation for Shang-
hai speakers are the following:

• count(s)
count(s)+count(sh)

• count(z)
count(z)+count(zh)

• count(c)
count(c)+count(ch)

Since we did not wish to presume a hand transcription of the database we investigated computing
these ratios automatically from decoding output. The single best transcription is errorful, but in
previous work (Bacchiani et al., 2004; Saraclar and Sproat, 2004) it has been shown that if one
computes weights for strings over a lattice rather than over the single best path, one can generally
improve one’s estimate of the population statistics. The output of drecog cannot be interpreted
directly as a probability distribution over strings, but the AT&T FSM toolkit provides a pushing
algorithm (Mohri and Riley, 2001) that moves weights so that the resulting set of weights can be
interpreted as (negative log) probabilities. The result of this pushing is that one can reconstruct the
probability of an arc, which is to say the set of paths leading through that arc, by semiring timesing
the state potential of the origin state of the arc, and the weight on the arc itself. Following (Saraclar
and Sproat, 2004) we construct a “count” C(l|L) for a given label l in a lattice L, as:

C(l|L) =
∑

π∈L

p(π)C(l|π)

=
∑

π∈L

(

p(π)
∑

a∈π

δ(a, l)
)

=
∑

a∈L

(

δ(a, l)
∑

π∈L:a∈π

p(π)
)

=
∑

a∈L

f(k[a])p(a|k[a])

where C(l|π) is the number of times l is seen on path π, p(π) is the probability of path π, f(k[a]) is
the state potential for input state k[a] leading to the arc a, and δ(a, l) is 1 if arc a has the label l and
0 otherwise. In this way, estimates of the phoneme populations required above could be derived for
each lattice and hence for each speaker, and the requisite ratios computed.

The lattices were derived by running the decoder using the MBN baseline acoustic model, and
the standard language model. For the training data this is cheating somewhat since the language
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Figure 12: Output of two-way clustering of the test speakers using fronting ratios. For comparison the hand assigned
labels of “A” (accented) and “S” (standard) are prepended to the speaker ID’s. It will be seen that Cluster 1 is mostly
standard and Cluster 2 is mostly accented.

model includes the transcriptions for the training data. However since the CER was 61% for this
baseline, it is unlikely that this was a significant benefit.

An additional feature that was considered was age. In the case of the training data we used the
actual age of the speaker; in the case of the testing data we used the predicted age from the best age
predictor discussed in Section 8.1.

We used the Cluto 2.1.1 (Karypis, 2003) clustering toolkit to decide upon a clustering for
both the training and testing data; two conditions were considered, namely using only the frica-
tive/affricate ratios and using those plus age. By default the vcluster tool in Cluto uses a repeated
bisections method with a cosine distance measure. An example of the two clusters produced can be
seen in Figure 12.
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10 Adaptation of Acoustic Models

Previous research (Wang, Schultz, and Waibel, 2003) suggests that MLLR can be used on groups of
speakers in training set to help adapt acoustic models to foreign accents. However, applications of
MLLR in this multi-speaker adaptation environment have been limited to a single global transform.
Huang et al. (Huang et al., 2000) used MLLR with 65 phone-based transforms on individual test
speakers, but they turned off the MLLR in their standard baseline system.

In this section, we explore adaptation techniques in both speaker independent (SI) and speaker
dependent (SD) systems. Section 10.1 shows that combining MLLR with multiple transforms and
MAP can improve the recognition performance. In order to show that the gain we get from speaker
independent adaptation can be further improved when speaker dependent adaptation is used, the
result of speaker dependent adaptation experiments is shown in Section 10.2

10.1 Supervised adaptation on training set

We experimented with various supervised adaptation techniques on the training set. Results are
show in Table 15. This table shows that IF-60, the MLLR with 60 phone-based transforms, is
significantly better than Auto-60 which is the MLLR of 60 transforms by data-driven clustering.
By applying MAP on top of both of the MLLRs, the gap is narrowed. We also found that the best
combined system is 1.7% absolute better than applying MAP alone.

Baseline (no adaptation) + MAP + MLLR (Auto-60)
61.0% 45.4 % 51.2%

+ MLLR (IF-60) +MLLR+MAP(Auto-60) +MLLR+MAP(IF-60)
47.8% 44.5% 43.7%

Table 15: CER (%) Comparison of varies types of adaptation to baseline acoustic models trained on MBN corpus

10.2 Test speaker unsupervised MLLR adaptation

It has been reported (Huang et al., 2000; Mayfield Tomokiyo and Waibel, 2001) that speaker de-
pendent MLLR adaptation is very useful for accented or non-native speech. We performed speaker-
dependent adaptation on both MMIF-60 and WU baseline models, where MMIF-60 represents the
best model of +MLLR+MAP (IF-60) in Table 15. Two global transforms are used in our experi-
ment, one for the silence model and one for speech models. The results in Table 16 shows that we
can get about 3% absolute gain after speaker adapatation.

Table 16 also shows the speaker averaged CER for “more Standard” group and “more Accent-
ed” group, which have been defined by fricatives and affricates ratio classifier discussed previously.
It can be observed from the table that MMIF-60 favors “more standard” speakers, and WU favors
“more accented” speakers. For comparison, the results of speaker independent systems for the same
groups of speakers are also listed in Table 16.

10.3 Adaptation to Clusters

Considering the diversity of the speakers, we believe we can adapt to individual speaker clusters in
order to improve performance.



Dialectal Chinese Speech Recognition: Final Report. 30

Speaker-independent Speaker-dependent
Speaker Group WU MMIF-60 WU MMIF-60
more standard 39.6 37.5 36.5 34.7
more accented 49.0 50.3 46 47
Speaker Avg. 41.5 41.7 44.5 44.8

Table 16: Speaker averaged CERs (%) of speaker dependent (SD) and speaker independent (SI) systems

First we directly adapted to the hand separated speaker cluster, and found that performance has
decreased comparing to adapting on the entire training set. This is probably caused by insufficient
data when adapting only on speaker clusters. The adaptation method used in this experiment is 3
iterations of Auto-60 MLLR and 3 iterations of MAP.

Adapted From TEST
c1 c2 c3 c4

c1 Male (more) Standard Speakers 53.8 52.4 58.4 71.1
c2 Male Accented Speakers 50.8 45.6 53.6 67.5
c3 Female (more) Standard Speakers 62.8 57.7 36.1 54
c4 Female Accented Speakers 63.4 57.7 38.8 52.1
auto-MLLR+MAP 48.1 43.6 37.3 52
WU Baseline 48.7 43.4 38 49

Table 17: Direct Adapt from MBN to the hand separted clusters

We considered the sparse data problem, and then experimented with first adapting on the entire
training set, and then adapting again on the speaker clusters, thus using all the data while attempting
to shift the weight toward the data that is more similar to the particular test speaker. The adaptation
method used in this experiment is 3 iteration of 60-Auto MLLR and 3 iteration of MAP to adapt on
the entire training set, and then 3 iterations of 60-Auto MLLR and 3 iterations of MAP of adaptation
on the speaker clusters.

Adapted From TEST
c1 c2 c3 c4

c1 Male (more) Standard Speakers 51 46.2 46.9 60.7
c2 Male Accented Speakers 48.6 44.6 47.5 59
c3 Female (more) Standard Speakers 54.8 48.7 36.7 52.9
c4 Female Accented Speakers 55.2 49.9 38.3 50.3

Table 18: Adapt from MBN to the hand separted clusters by two steps

We also experimented on IF transform by substitute Auto-MLLR with 60-IF MLLR, which
improved the system performance.

Although the above experiments didn’t show any improvement of adaptation on speaker clus-
ters, we think it might be useful to try automatic classifications and use larger clusters. Table 20
shows the experiment results:

In order to compare the hand cluster and the scz ratio automatic cluster performance, we merged
the 4 hand clusters into 2 clusters and have the follow results. The pronunciation ratio automatic-
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Adapted From TEST
c1 c2 c3 c4

c1 Male (more) Standard Speakers 50.3 46.9 40.3 61.9
c2 Male Accented Speakers 49.4 44.1 47.6 59.6
c3 Female (more) Standard Speakers 54.5 49.2 36.5 51.7
c4 Female Accented Speakers 55.1 49.6 38.3 50.7
IF-MLLR+MAP 48.7 42.9 35.6 50.7

Table 19: IF-MLLR + MAP Adaptation from MBN to the hand separted clusters by two steps

Adapted From TEST
scz-c1 scz-c2 scz-c3 scz-c4

scz-c1 more Standard Speakers based on scz ratio 40.7 52.1
scz-c2 Accented Speakers based on scz ratio 41.8 50.1
scz-c3 more Standard Speakers based on scz ratio and age 38.1 49.6
scz-c4 Accented Speakers based on scz ratio and age 39.5 48.2
IF-MLLR+MAP 37.9 49.6 35.9 47
WU Baseline 40 48.4 37.9 46.8
Table 20: IF-MLLR + MAP Adaptation from MBN to the automatic separted clusters based on

cluster outperformed even hand separation cluster, which suggest automatic speaker clusters maybe
more suited for this particular task. But over all, cluster adaptation performance is still worse than
the adaptation on the entire training set.

From the above acoustic adaptation experiments, we find that acoustic modeling is able to cap-
ture the pronunciation variability pretty good. Fig. 13 shows the comparison of Gaussian Mean
before and after adaptation, where the axes are first and second principal components of the means
of the 14 mixtures of middle state of phoneme s and sh.

Figure 13: Comparison of Gaussian Probability Distributions before and after Adaptation

As a comparison, we did experiments using multiple pronunciation dictionary and applying
force-alignment on the training data to find the best pronunciation before adaptation. Experiment
results are shown in Table 22. Even though the results are slightly better than using single pronunci-
ation for the cluster adapted cases, they still cannot outperform the adaptation on the whole training
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Adapted From TEST
More Standard More Accented

More Standard 44.7 52.5
More Accented 44.4 48.8
IF-MLLR+MAP 42.1 47.6
WU Baseline 42.7 46.1

Table 21: IF-MLLR + MAP Adaptation from MBN to the hand separted “more accent” and “more standard” clusters

set.
In conlusion, cluster adaptation cannot outperform the adaptaion using the whole training set,

which indicates that the current adaptation algorithm (either MAP or MLLR) cannot deal with the
overtraining problem.

11 Study of accent discriminative acoustic features

The results in Table 16 show that there is an approximately 10% (absolute) gap between ”more
accented” and ”more standard” speakers for all the SI and SD models. In this section we present
methods for improving the performance of “more accented” speakers so that the gap can be nar-
rowed.

In (Liu and Fung, 1999), Liu and Fung show that besides energy, formant frequency and pitch
are also helpful in a task for accent classification. It is reasonable to assume that some acoustic
features, such as formant parameters, pitch, word-final stop closure duration etc., might be more
discriminative for accented speech. Therefore it may be helpful to add some of these features to
the “accented speech recognizer”. To test this assumption, we carried out preliminary experiments
by appending formant parameters to MFCC features. The formant parameters were estimated auto-
matically using the formant tracking algorithm in (Zheng and Hasegawa-Johnson, 2004).

In our experiment, we choose first three formants (F 3
1 = [F1 F2 F3]) and their amplitudes

(η3
1 = [η1, η2, η3]) as the accent related features. The detailed definition and estimation formulas

of η are given in (Zheng and Hasegawa-Johnson, 2004). Two acoustic models were trained by
appending F 3

1 and η3
1 to the 39 dimensional MFCC vectors respectively.

The results are given in Table 23. We observed that the model with η3
1 was able to improve 5 out

of the 11 speakers in the “more accented” group; and the model with appended F 3
1 was only able to

improve 2 out of the 11 speakers in the “more accented” group. The performance was degraded for
speakers in the “more standard” group for both models.

The above experiment shows that formant amplitudes η3
1 might contain extra information for

Adapted From TEST
scz-c1 scz-c2 scz-c3 scz-c4

scz-c1 more Standard Speakers based on scz ratio 39.3 50.7
scz-c2 Accented Speakers based on scz ratio 39.8 50
scz-c3 more Standard Speakers based on scz ratio and age 37.2 48.8
scz-c4 Accented Speakers based on scz ratio and age 38.2 48

Table 22: Multiple Pronunciation Dictionary plus Adaptation
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accent discrimination. We therefore constructed a new accent favorable model WUη by finding
the best path in the union of the two decoding lattices from the Wu baseline model and the new
model with extra feature dimensions η3

1 . As shown in Table 23, compared to the WU baseline
model, the overall CER for this group is reduced to 48.2%, and the CERs were reduced for 8 out 11
speakers in the “more accented” group.

A similar experiment was done for speaker dependent system, where two models (WU and
MFCC + η3

1) were adapted for each individual test speaker and a WUη was obtained for each test
speaker. Compared to the WU baseline model test speaker adaptation, the CERs were reduced for
9 out 11 speakers in the “more accented” group.

MFCC+F 3

1
MFCC+η3

1
WUη

SI 49.4 48.9 48.2
SD - 46.1 45.6

Table 23: Average CER (%) of more accented speakers by modeling both MFCC and formant parameters

12 Model Selection

12.1 Model selection based on accentedness

To make use of the prior knowledge of accentedness, we proposed a model-selection algorithm.
Suppose that there are M different acoustic models, θ1, θ2, ... , θM , given observation x, we want
to find the best acoustic model according to Eq. 1,

θMAP = argmax
k=1,2,··· ,M

p(θk|x)

= argmax
k=1,2,··· ,M

∑

a

p(θk|a)
︸ ︷︷ ︸

θk⊥x|a

p(a|x)
︸ ︷︷ ︸

accentedness classifier

(1)

where a is the accentedness variable.
For a binary accentedness classification, we have M=2,

a =

{

1 if the speaker is “more standard”

2 if the speaker is “more accented”

and
p(θk|a) = δ(k − a)

To make Eq. 1 work, first, we need a reliable accentedness classifier, as described in the previous
section; second, we need to find the acoustic model θk, which is most appropriate for the degree of
accentedness. In Section 10 and 11, we show how to find two acoustic models which favor different
accent groups. And Section 12.2 reports the results of model-selection experiment, showing the
effectiveness of the accentedness classifier.
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12.2 Experiment of model selection

In this section, we use the following model selection strategies:

θ =

{

θMMIF−60 if the speaker is in cluster 1

θWU or θWUη if the speaker is in cluster 2
(2)

Table 24 shows the results of model selection between WU or WUη and MMIF-60 models based
on automatic accent detection results from Section 9. The results shows that by using the ratio
of counts of particular fricatives and affricates as the input of accent classifier, we were able to
improve the WU baseline by 1% absolute in both SI and SD cases. Furthermore, formant amplitude
η is useful to discriminate “accent speakers”.

WU+MMIF-60 WUη + MMIF-60
GMM SCZ GMM SCZ

SI more accented - 49 - 48.2
SI speaker avg. 44.4 43.8 44.3 43.4
SD more accented - 46 - 45.6
SD speaker avg 41.3 40.9 41.2 40.7

Table 24: CER (%) for model selection based on the detection of accent, where “WU+MMIF-60” means selection
between WU and MMIF-60 models, and “WU η + MMIF-60” means selection between WU η and MMIF-60 according
to Eq. 2. “SCZ” means model selection based on accent detection using the ratio of counts of particular fricatives and
affricates. “GMM” means model selection based on the accent detection of GMM classifier.

12.3 Conclusion

Our research shows that different acoustic models have advantages for different group of speak-
ers. We report the approach of combining accent detection, accent discriminative acoustic features,
acoustic adaptation and model selection to the problem of accented Chinese speech recognition.
Experimental results show that our proposed approaches achieved 1.0∼1.4% absolute reduction of
character error rate over the most state-of-the-art acoustic modeling techniques on Wu-accented
Chinese speech.

Figure 14: Summary of results
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13 Speaker-Clustering-based Hybrid Acoustic Modeling on Wu-
Accented Chinese Speech

13.1 Introduction

Acoustic modeling is a crutial component in accented or foreign accented speech recognition. Ac-
tive research has been carried out in this area during the past few years. The proposed methods vary
from simply collecting data in that accent and training a recognizer, to various ways of adapting
recognizers trained on unaccented speech. Wang, Schultz, and Waibel (Wang, Schultz, and Waibel,
2003) investigated German-accented English speakers in the VERBMOBIL (conversational meet-
ing planning) task. Tomokiyo and Waibel (Mayfield Tomokiyo and Waibel, 2001) examined the
task of recognizing Japanese-accented English in the VERBMOBIL domain. In both of the tasks,
it was found that training on non-native speech data, especially when mixed with in-domain na-
tive speech data, provides the most obvious gains in performance on accented data. The simplest
use of adaptation was merely the direct use of MLLR (Maximum Likelihood Linear Regression) to
adapt individually to each test speaker. In (Huang et al., 2000), in order to recognize Shanghainese-
accented Putonghua, Huang et al. applied standard speaker MLLR adaptation to a Microsoft Whis-
per system that had been trained on 100,000 sentences from 500 speakers from the Beijing area. In
(Wang, Schultz, and Waibel, 2003)(Mayfield Tomokiyo and Waibel, 2001) , MLLR was adapted not
just to the single accented test speaker, but also to a larger number of accented speakers. Research
in (Wang, Schultz, and Waibel, 2003)(Mayfield Tomokiyo and Waibel, 2001)(Huang et al., 2000)
shows the effectiveness of MLLR or MAP (Maximum A Posteriori) adaptation on accented speech,
but it did not report whether combining MLLR and MAP could be helpful for accented ASR.

While some promising results have been published on accented speech recognition using the
above approaches, the recognition accuracy on accented speech is still lousy and definitely needs
further improvement. Some research issues remain open. First, more sophisticated forms of MLLR
or MAP may be applied, such as MLLR using more specific transforms rather than a single glob-
al transform. In particular, our research shows that current adaptation schemes have varied per-
formance on different groups of speakers. Second, the effect of combining MLLR and MAP in
accented ASR needs to be explored and optimized.

In this workshop, in order to improve current accented speech recognition performance, we will
first apply and evaluate acoustic modeling algorithms to various accent-based speaker clusters. We
then propose a new Accent-based Hybrid Acoustic Modeling (AHAM) method that applies Max-
imum Likelihood training and MAP/MLLR adaptation algorithms to more accented speakers and
more standard speakers, respectively, while each speaker is classified as � more accented

�
or �

more standard
�

using the phoneme-based automatic accent detection algorithm presented in the
previous section. In our experiments on spontaneous Wu-accented Chinese speech recognition, the
proposed AHAM method achieved higher recognition accuracy than conventional single-speaker-
cluster-based acoustic modeling algorithms. In particular, the experiments show that more improve-
ment may be achieved if more speech training data from accented speakers is available.

Note that although all experiments in this workshop were performed on WU-accented conver-
sational Chinese speech only, we believe that our proposed approaches will also be helpful for
accented speech with other Chinese dialects or in other languages.
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13.2 Basic Theory and Problem Statement

During speech recognition, for any acoustic data string A = {a1, a2, · · · , an} , the best hypothe-
sized word string W = {w1, w2, · · · , wm} is conventionally defined as

Ŵ = argmax
W

P (A|λ̄,W )P (W ) (3)

where P (A|λ̄,W ) is the acoustic model and P (W ) is the language model. In addition, λ̄ =

{λ1, λ2, · · · , λn} is the set of statistical acoustic model parameters and is optimized as

λ̄ = argmax
λ̄

{
∏

A

P (A|λ̄,WA)} (4)

In this work, the language model P (W ) is out of our concern. Therefore, equation 4 may be
simplified as

λ̄ = argmax
λ̄

{
∏

A

P (A|λ̄)} (5)

Equation 5 represents an ideal case where the acoustic model parameters are optimized over
infinite acoustic data. In the reality, the acoustic training data available is always limited and can be
denoted as φtraining = {A1, A2, · · · , Ak} . Accordingly, the acoustic parameter set optimized on
φtraining is defined as

λ̄training = argmax
λ̄

{
∏

A∈φtraining

P (A|λ̄)} (6)

We hope that φtraining is, although with limited size, fairly representation of all possible acous-
tic data φ (especially the acoustic test data φtest ), and hence λ̄ ≈ λtraining . Unfortunately, acoustic
training data are sometimes very difficult, if possible to collect. As a result, there are many cases
where φtraining and φtest are significantly different from each other due to some critical mismatch-
es, such as speaking style, noise conditions, channel characteristics and accents, as shown in Figure
15. Under these mismatched situations, λ̄ 6= λ̄training and only a sub-optimal acoustic model pa-
rameter set can be obtained and to be used in equation (3). Dramatic decline of recognition accuracy
will then be observed, as expected.

Accent is perhaps one of the most critical and also most commonly observed matches in speaker-
independent spontaneous speech recognition. In this workshop, experiments are performed on
acoustically different test corpora to evaluate the impact of accent mismatch. The acoustic model
was optimized on Mandarin Broadcast News (MBN). It was then tested on three acoustically dis-
tinct test corpora: MBN, Wu-Accented Chinese read speech, and Wu-Accented spontaneous speech.
The recognition results are shown in Table 25. While 19.1% Character Error Rate (CER) was ob-
tained on the matched MBN test set, the CER increased dramatically to 57.4% for Wu-Accented
read speech test set and to 61.0% for Wu-Accented spontaneous speech test set. Those are more
than 200% jumps in CER! It is obvious that some accent-based acoustic modeling techniques needs
to be designed and used to attack this data/accent mismatch problem.

13.3 Conventional Acoustic Modeling for Accented Speech

Without losing generality, assume we have two acoustic training sets: φstandard and φaccented .
φstandard consists of speech from standard Mandarin speakers and φaccented consists of speech
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Test-set MBN Wu-Accented Read Speech Wu-Accented Spontaneous Speech
CER 19.1% 57.4% 61.0%

Table 25: Recognition performance of acoustic model λ̄MBN trained on MBN corpus

from accented speakers. The acoustic test set consists of speech from accented speakers. Further-
more, the size of φstandard , N(φstandard) , is usually much greater than the size of N(φaccented),
. In our experiments, is five times as big as . Due to this huge difference in data account between
φstandard and φaccented , there are conventionally two different acoustic modeling methods for ac-
cented speech:

1. Optimizing acoustic model parameters by maximizing likelihood on accented speech only,
i.e.,

λ̄accented = argmax
λ̄

{
∏

A∈φaccented

P (A|λ̄)} (7)

Conventional EM (Expectation-Maximization) algorithm can be used to calculate the above
equation.

2. Adaptation of acoustic model parameters from standard-speech-oriented to accented-speech-
oriented via MAP (Maximum A Posterior) or MLLR (Maximum Likelihood Linear Regres-
sion)

λ̄standard = argmax
λ̄

{
∏

A∈φstandard

P (A|λ̄)} (8)

λ̄standard = argmax
λ̄

{
∏

A∈φaccented

P (A|λ̄, λ̄standard)} (9)

Greater details about MAP and MLLR adaptation have already been introduced in the previ-
ous chapter.

Since λaccented is optimized only on φaccented while λ̄MAP+MLLR is optimized on both λaccented

and λstandard, it is common sense that λ̄MAP+MLLR is superior to λaccented when N(φaccented)

is much less than N(φstandard) . When N(φstandard) is fixed and N(φaccented) increases, the
accuracy of λaccented improves much faster than λ̄MAP+MLLR , and, at one point, λaccented will
surpass λ̄MAP+MLLR . Therefore, the optimal acoustic model may be derived from these two
models and defined as

λ̄1 =

{

λ̄MAP+MLLR if N(φaccented) < N(φstandard)

λ̄accented if N(φaccented) ≥ N(φstandard)
(10)

where the value of Nthreshold may be optimized upon some acoustic held-out sets. Alternatively,
the optimal acoustic model may also be a linear combination of the above two models and defined
as

λ̄2 = wMAP+MLLRλ̄MAP+MLLR + waccentedλ̄accented (11)

where wMAP+MLLR and waccented are the probability weights and wMAP+MLLR + waccented = 1

.
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13.4 Accent-based Hybrid Acoustic Modeling (AHAM) via Speaker Clustering

The conventional acoustic modeling approaches described above partition Mandarin speakers into
two classes: standard speakers and accented speakers. Accordingly, the acoustic training data is
partition into φstandard and φaccented . However, this binary classification is constrained in prac-
tice since our experiments show that the accent of each speaker is a matter of degree rather than
binary. Therefore, we propose a new Accent-based Hybrid Acoustic Modeling (AHAM) method
by partitioning speakers into multiple categories based on their accentedness. In particular, we
will start from the simplest 3-class speaker clustering approach where the Mandarin speakers are
clustered into standard speakers, slight-accented speakers and strong-accented speakers. The cor-
responding training sets are φstandard , φslight−accented and φaccented . For any acoustic data string
A = {a1, a2, · · · , an} , the best hypothesized word string W = {w1, w2, · · · , wm} based on
AHAM is defined as

Ŵ =







argmax
W

P (A|λ̄accented,W )P (W ) if g(A) = Sstrong−accented

argmax
W

P (A|λ̄MAP+MLLR,W )P (W ) if g(A) = Sslight−accented

(12)

where
λ̄accented = argmax

λ̄

{
∏

A∈φstrong−accented

P (A|λ̄)} (13)

λ̄standard = argmax
λ̄

{
∏

A∈φstandard

P (A|λ̄)} (14)

λ̄MAP+MLLR = argmax
λ̄

{
∏

A∈φslight−accented

P (A|λ̄, λ̄standard)} (15)

g(A) is an accent-detection function that classify any unknown speaker into strong-accented or
slight-accented speakers. In this workshop, we proposed a phoneme-based accent detection algo-
rithm, which has been introduced and discussed in the previous chapters. One drawback of con-
ventional approaches on accented speech recognition shown in equation (7)-(11) is that it ignores
the degree of accentedness among all the speakers. Our proposed AHAM categorizes speakers in-
to multiple groups according to their accentedness and models them differently. More specifically,
strong-accented speakers are modeled upon strong-accented speech training data via maximum like-
lihood criterion, while slight-accented speakers are modeled by adapting acoustic modeling trained
on standard speakers to slight-accented speech training data. In this way, we can achieve a tradeoff
of using both the information from matched but limited accented speech data and the information
from unmatched but large-amount standard pronounced speech data.

13.5 Experiments

13.5.1 Experimental Setup

The conventional acoustic modeling approaches as well as our proposed AHAM method are evalu-
ated in our offline 50k-words Wu-accented spontaneous Mandarin speech recognition experiments.
Our test set consists of one-hour, 16-bit, 16kHz-sampled and digitally recorded Wu-accented spon-
taneous conversations from 10 male and 10 female speakers. For acoustic modeling, two acoustic



Dialectal Chinese Speech Recognition: Final Report. 39

training sets were used: MBN training set (φstandard ): 1997 Mandarin Broadcast News Corpus
(Hub-4NE), which consists of 30 hours read speech from standard Mandarin speakers; WU training
set (φaccented ): 6.3 hours Wu-accented speech training data from 40 male and 40 female speak-
ers. Standard 39-dimentional MFCC features were computed and used via HTK toolkit version 3.2
(Young et al., 2002). AT&T FSM tools were adopted for language modeling and speech decoding
(Mohri, Pereira, and Riley, 2002). All the experimental results will be reported in Character Error
Rate (CER), which is a standard measure of performance in Chinese speech recognition.

13.5.2 Experiments of Acoustic Modeling on Accent-based Speaker Clusters

In equation (13), we propose to train accented acoustic model λ̄accented on a strong-accented training
set. Various strong-accented training sets can be derived using varied accent detection algorithms.
ASR experiments were carried out to compare the performance of these accented acoustic models
with the baseline acoustic model that is trained on all accented speech data. The experimental
results are listed in Table 26. We can see that models trained on strong-accented sub-training-
set significantly outperform the model trained on slight-accented sub-training-set, which is a clear
evidence of the importance of accentedness in our WU-accented speech recognition task. The
best model λ̄weighted was achieved when all the accented training data was used with a weighted-
emphasis on strong-accented speech over slight-accented speech. However, the resulting CER of
44.78% is still worse than the baseline CER of 44.27%. This is because the 6.3 hours accented
training data is so limited that any removal of speakers will deteriorate robust distribution estimation
of all the Mandarin pronunciations, even if those speakers are without accents. We believe that
when φaccented is sufficiently large to estimation the distribution of all the Mandarin pronunciations,
λ̄weighted should be significantly better than λ̄baseline.

Similar experiments results were observed in acoustic model adaptation of λ̄MAP+MLLR using
strong-accented sub-training-sets.

Training-set for Acoustic Modeling Test-set CER
All Wu-accented speakers: λ̄baseline 44.27%
Speech from GMM-detected slight-accented speakers 49.67%
Speech from GMM-detected strong-accented speakers 48.06%
Speech from GMM+Age-detected strong -accented speakers 47.31%
Speech from manually-clustered strong-accented speakers 47.65%
All Wu-accented speakers with accent-based weights: λweighted 44.78%

Table 26: Performance comparison of acoustic models trained on various training sets

13.5.3 Experiments of AHAM on Accent-based Speaker Clusters

The performance of Accent-based Hybrid Acoustic Modeling (AHAM) method is evaluated and
compared with baseline conventional acoustic modeling methods in Table 27. By selecting λ̄accented

or λ̄MAP+MLLR for each speaker based on automatic accent detection, AHAM reduced the CER
from 44.27% of λ̄accented alone, and 44.37% of λ̄MAP+MLLR alone, to 43.39%, representing a
0.88% absolute error rate reduction. If λ̄accented and λ̄MAP+MLLR can be selected correctly for
each speakers as an ideal case, the CER can be further reduced to 43.23%, which is the Lower-bound
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of AHAM CER. Although this 2% relative improvement is not very significant, we will show in the
next subsection that the potential improvement of AHAM is significant when the accented training
data is sufficient.

Acoustic Models Test-set CER
accented l in equation (13): Baseline 1 44.27%
MLLR MAP+ l in equation (15): Baseline 2 44.37%
AHAM in equation (12) 43.39%
Lower-bound of AHAM 43.23%

Table 27: Performance comparison between baseline acoustic models and our proposed AHAM method

13.5.4 Experiments of AHAM with various amount of accented training data

As mentioned earlier, the amount of accented training data is crucial to the performance of various
acoustic models. In order to evaluate the relationship of accented training data size and ASR per-
formance, we randomly partitioned the 6.3 hours Wu-accented training data into several sub-sets by
partitioning the speech data of each speaker proportionally. The experimental results are depicted in
Figure 16. The chart shows that λ̄MAP+MLLR performed best when only 1-hour accented data are
available for training. λ̄AHAM becomes the best model when the amount of N(φaccented) is about or
more than 3 hours. In particular, the performance improvement of λ̄AHAM over λ̄MAP+MLLR and
λ̄accented is increasing consistently with the increases of N(φaccented) : 0.49% for 4 hours training
data, 0.67% for 5 hours training data, and 0.88% for 6 hours training data. As a result, we believe
the improvement of λ̄AHAM over conventional acoustic models will become bigger and bigger if
the amount of accented training data keeps increasing.

Additional experiments were carried out to compare performance of AHAM with the perfor-
mance of acoustic modeling selection based on MAP (Maximum A Posterior) criterion. The results
are shown in Figure 17. While the improvement of AHAM in Figure 17 is smaller compared with
the improvement shown in Figure 16 as it is now compared with an enhanced baseline. Neverthe-
less, the trend of CER reduction by using AHAM is similar and AHAM consistently outperforms
its competitor whenever N(φaccented) is greater than 3.5 hours.

13.6 Summary

Acoustic modeling for accented speech recognition is a very important but also challenging task for
most state-of-the-art speech recognition systems. Since current acoustic models are mostly trained
on standard pronounced speech, models need to be either re-trained on accented speech data or
adapted from standard pronunciations to accented pronunciations to achieve optimal ASR perfor-
mance. Conventional acoustic modeling on accented speech treats speakers as either accented or
non-accented. However, it is well known that the accent of each speaker is a matter of degree.
Therefore, we propose a new accented hybrid acoustic modeling (AHAM) method that partitions
speakers into multiple clusters and treats them differently. The accent of each speaker is detect-
ed via a phoneme-based accent detection algorithm proposed in the previous chapter. Base on the
accent detection result, an appropriate acoustic model is then selected to decode all the speech for
the specific speaker. We thereby take a good advantage of both the limited accented training data
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available and large account of standard pronounced training data. Extensive experiments were car-
ried out on speak-independent Wu-accented spontaneous speech recognition. AHAM consistently
outperformed baseline acoustic models with a moderate margin. The improvement becomes more
significant when more accented speech training data is available. While our current AHAM focuses
on 3-class speaker classification, more speaker classes in AHAM will be investigate in our future
work as more accented training data become available.

14 Speaker-Adaptive Training

Adaptation schemes investigated in the previous section, using MLLR and MAP, apply a linear
transform to an initial speaker-independent model to bring it closer to the test speaker. These models
improved performance on Wu-accented speech. Their performance can be further enhanced by
reducing the variance of the initial speaker-independent model. Informal perceptual experiments
and measurements of fronting of retroflexes through ratios have shown that the degree of accent
varies significantly across speakers in the corpus. As a result the speaker independent model trained
on the Wu-accented data has a large variance. It is well understood that speaker-adaptive model
normalizes the speakers in the model space (Anastasakos et al., 1996), thus produces a compact
speaker-independent model. So, we investigated the use speaker-adaptive model training (SAT) on
Wu corpus.

In the first experiment, the iterations of speaker-adaptive model training (SAT) were initialized
with the models trained on Wu data using maximum likelihood criterion (Wu-ML). Two sets of
models were estimated (Wu-ML+SAT-1 and Wu-ML+SAT-2) by two iterations of SAT on the Wu
training corpus. All the models were evaluated with and without MLLR adaptation on the test set.
In all the experiments in this section, two transforms (silence and non-silence) were used. During
test, initially, a single global MLLR transform was estimated, which was then used to obtain two
MLLR transforms in 4 iterations. The results are shown in Table 28.

Model without MLLR with MLLR
Wu-ML 44.2 41.2
Wu-ML+Wu-SAT-1 43.7 39.4
Wu-ML+Wu-SAT-2 44.5 39.1

Table 28: Evaluation of speaker-adaptive model trained on Wu-accented training data.

The results of SAT models without MLLR is shown merely for the sake of contrast, and is not
expected to perform better. When the models are evaluated with MLLR adaptation on the test set, the
speaker-adaptive models clearly improve the performance of the baseline model, from 41.2 to 39.1.
The performance of the Wu-SAT-Iter2 model with MLLR is also better than the best performance
(40.7) obtained in the previous section.

Suppose Wu-accented training corpus was not available, and all we had was Mandarin Broadcast
News (MBN) corpus, would SAT and MLLR be of help? To investigate this question, we examined
the effect of training speaker-adaptive model solely on the MBN corpora. In this case, we initialized
the SAT iterations on MBN training corpus with corresponding maximum likelihood models (MBN-
ML). The models were evaluated on the Wu-accented corpus, with and without MLLR, as in the
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previous experiment. As shown in Table 29, model space normalization on the mismatched training
data (MBN corpora), hurts the performance badly on Wu corpus even with MLLR adaptation, and,
in this case, use of SAT is not recommended.

Model without MLLR with MLLR
MBN-ML 60.9 54.8
MBN-ML+MBN-SAT-1 65.8 56.6
MBN-ML+MBN-SAT-2 67.4 57.6

Table 29: Evaluation of speaker-adaptive model trained on MBN training data.

An improvement on this, would be to train speaker-adaptive model on the Wu corpora, and
initialize it with the best MBN-derived model (MBN-ML+Wu-MLLR-MAP) from the previous
section. Recall, this model was obtained by 6 iterations of MLLR and 3 iterations of MAP over
the Wu training corpus, using 120 transform where a transform modeled the onset and coda of
allophones of one of the 60 phonemes. Once again, two sets of models were trained by applying
two iterations of SAT (MBN-ML+Wu-MLLR-MAP+Wu-SAT-1/2). As shown in Table 30, SAT on
Wu corpus, initialized with MBN-derived models, did not improve performance, and this may be
due to mismatch in the model space. These models are better than the models trained only on MBN
corpus.

Model without MLLR with MLLR
MBN-ML+Wu-MLLR-MAP 43.7 40.7
MBN-ML+Wu-MLLR-MAP+Wu-SAT-1 49.4 43.9
MBN-ML+Wu-MLLR-MAP+Wu-SAT-2 52.8 46.2

Table 30: Evaluation of speaker-adaptive model trained on Wu-accented training data.

In conclusion, our adaptation experiments in this section show that having about 10 hours of
indomain acoustic data is worth more than larger amounts of out-of-domain data, especially, when
there are significant differences both in acoustic conditions and in speaking styles.

15 Conclusions and Future Work

While we view the results achieved to be preliminary, we believe that we can draw the following
conclusions from the work that we performed this summer.

First, we have proposed a new approach to dealing with ASR for accented speech, that depends
upon the linguistic common-sense observation that accentedness is not an all-or-nothing proposi-
tion, but rather a matter of degree. Our approach thus involves first detecting the degree of accented-
ness, and then selecting acoustic models based on this degree of accentedness. We demonstrate a 1%
overall CER reduction using these techniques. As part of this work we also developed accentedness-
specific transforms using supervised MLLR plus MAP on accented training corpus.

Accentedness itself was detected using phone count ratios, which were computed from decoder
lattices and usd for unsupervised speaker clustering.
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Oracle experiments on pronunciation modeling suggest, consistent with previous reports, that
one can only expect modest gains (perhaps 1.5%) from pronunciation modeling or lexicon adapta-
tion alone; however see Appendix D for a report on some further results from lexicon adaptation.

Needless to say, the use of a binary classification into “more” or “less” accented speakers only
goes part of the way to addressing the fact that accentedness is a continuous variable. The mathe-
matical model in Section 12.1 is a proposal for future work wherein accentedness could be modeled
continuously using arbitrarily fine divisions of accentedness.3

One of the side projects that shows some promise (and which will be developed in future work)
was the work on minimal perplexity word segmentation, reported on by Philip Bramsen in Ap-
pendix E.

3On the pronunciation modeling front, a proposal by David Kirsch to do continuous pronunciation modeling modeling
was one of the projects chosen for future support in the final day of the workshop. A description of this proposal can be
seen in the final presentation on the project website.
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Appendix A: Speakers

The following table lists details of the 100 speakers in our dataset. Given are the Speaker ID, Gen-
der, Age, Education Level, Putonghua (PTH) Level, Fluency, Recording Location and Recording
Microphone.

The abbreviations used in the Education column are as follows:

JHS Junior High School
SHS Senior High School
TSS Technical Secondary School
PS Polytechnic
JC Junior College
UG Undergraduate
Masters Masters

Putonghua level and fluency were determined by experts at the Chinese Academy of Social
Sciences (CASS). Putonghua level ranges from 1 (best) to 3 (worst), with subdivisions A (better)
and B (worse); all of our speakers fall in the range 2A-3B. Speakers were assigned fluency on a two
point scale, i.e. fluent or not fluent.

There were four major recording locations [Elaborate on these]:

1 Shanghai Wusi Junior High School
2 Shanghai Education Bureau
3 Factory
4 Academy

The suffixes “.1” and “.2” denote two different rooms in the same location.
Two microphones were used. They were:

1
2

Speaker ID Gender Age Education PTH Fluency Rec. Loc. Rec. Mic.
001 Male 39 TSS 3A No 3 1
002 Male 36 TSS 2B Yes 3 2
003 Male 38 TSS 3A Yes 3 1
004 Male 49 SHS 3A Yes 3 1
005 Male 50 JHS 2B No 3 1
006 Male 50 JHS 3A Yes 3 2
007 Male 25 TSS 2B Yes 2.2 1
008 Male 26 UG 2A Yes 1 2
009 Male 35 UG 2B Yes 1 1
010 Male 34 SHS 3A Yes 2.1 2
011 Male 30 UG 2B Yes 2.1 2
012 Male 34 UG 2B Yes 2.1 1
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013 Male 33 SHS 3A Yes 3 2
014 Male 39 SHS 3A Yes 3 1
015 Male 26 JC 3A Yes 2.2 1
016 Male 26 JC 2B Yes 2.2 1
017 Male 26 UG 3A Yes 2.2 2
018 Male 27 SHS 2B Yes 2.2 2
019 Male 29 UG 3A Yes 2.2 2
020 Male 45 UG 3A Yes 1 1
021 Male 45 SHS 3B Yes 1 2
022 Male 48 UG 3A Yes 1 1
023 Male 46 SHS 2B Yes 1 2
024 Male 45 SHS 3A Yes 3.1 2
025 Male 48 UG 3A Yes 2.1 1
026 Male 50 SHS 3A Yes 3 1
027 Male 48 SHS 3A Yes 3 1
028 Male 41 UG 3A Yes 2.2 2
029 Male 44 JC 3B Yes 2.2 2
030 Male 46 SHS 3A Yes 4 2
031 Male 41 SHS 3A Yes 4 1
032 Male 34 UG 3B Yes 4 1
033 Male 47 PS 3A No 4 1
034 Male 29 SHS 3A Yes 2.2 2
035 Male 36 JC 3B Yes 2.2 1
036 Male 47 UG 3A No 4 2
037 Male 46 JC 3A Yes 4 1
038 Male 33 UG 3A Yes 4 2
039 Male 26 JC 2B Yes 4 1
040 Male 33 UG 3A Yes 4 2
041 Male 34 JC 3A Yes 4 2
042 Male 50 UG 3B No 2.2 2
043 Male 44 UG 3A Yes 4 1
044 Male 28 UG 2B Yes 4 2
045 Male 50 TSS 3A Yes 4 2
046 Male 50 SHS 3A Yes 2.1 2
047 Male 40 SHS 3A No 3 1
048 Male 30 JC 3A Yes 2.2 1
049 Male 49 TSS 3A Yes 4 1
050 Male 37 Masters 3A Yes 4 2
051 Female 26 TSS 2B Yes 3 2
052 Female 40 TSS 3A Yes 3 1
053 Female 45 TSS 3B Yes 3 1
054 Female 45 TSS 2B Yes 3 2
055 Female 38 TSS 3A No 3 2
056 Female 41 TSS 3A Yes 4 1
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057 Female 48 JHS 3A Yes 3 1
058 Female 39 UG 3A Yes 1 2
059 Female 40 SHS 3B Yes 1 1
060 Female 27 SHS 2B Yes 1 1
061 Female 30 UG 2B Yes 2.1 2
062 Female 27 UG 2B Yes 2.1 1
063 Female 35 SHS 2B Yes 2.1 2
064 Female 34 UG 2B Yes 2.1 1
065 Female 26 SHS 3A Yes 2.1 1
066 Female 26 UG 2A Yes 2.1 2
067 Female 33 UG 2A Yes 2.1 2
068 Female 31 UG 2B Yes 2.1 1
069 Female 26 UG 2A Yes 2.1 2
070 Female 46 SHS 3A Yes 1 1
071 Female 46 SHS 3A Yes 1 2
072 Female 47 SHS 3A No 1 1
073 Female 48 UG 2B Yes 1 2
074 Female 50 UG 3A Yes 1 2
075 Female 47 UG 3A Yes 1 2
076 Female 41 UG 3B Yes 1 1
077 Female 45 SHS 3B Yes 1 2
078 Female 47 SHS 3A No 1 1
079 Female 45 UG 2B Yes 3 2
080 Female 43 SHS 3A No 3 2
081 Female 46 JC 3A Yes 3 2
082 Female 29 UG 2B Yes 2.1 1
083 Female 49 JHS 3A Yes 4 2
084 Female 38 UG 3A Yes 3 1
085 Female 40 SHS 3A Yes 3 1
086 Female 45 SHS 2B No 3 2
087 Female 48 SHS 3A Yes 3 1
088 Female 38 SHS 2B Yes 3 2
089 Female 43 JHS 3A Yes 4 2
090 Female 31 JC 2B Yes 2.2 1
091 Female 35 UG 2B Yes 2.2 1
092 Female 45 UG 3A Yes 4 2
093 Female 45 JC 3A Yes 4 1
094 Female 49 SHS 3A Yes 4 1
095 Female 29 SHS 2B Yes 4 1
096 Female 36 SHS 3A Yes 3 1
097 Female 40 SHS 3A Yes 3 2
098 Female 41 SHS 3A Yes 3 1
099 Female 41 JC 3B Yes 3 2
100 Female 39 SHS 3A Yes 3 2
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Appendix B: Details of Phonetic Transcriptions

Transcriptions of the Wu dialectal corpus were made using the Praat speech editor http://www.
fon.hum.uva.nl/praat/; see Figure 18. The transcriptions are in four tiers:

1. HZ: Chinese character tier, giving orthographic transcriptions of the utterances. In addition,
the following special symbols are used:

(a) Non-Chinese string enclosed in {}: meaning English letters or English words;

(b) Paralinguistic phenomena and noises: see Table 32.

2. PY: Transcription into the standard Pinyin symbol set, with tone. The special symbols de-
scribed in 1 are used.

3. SEMI: The surface form semi-syllable tier. This is a fairly close phonetic transcription in
terms of the initial-final (IF) set defined below. The observed tone of each syllable is attached
to the Final of the corresponding syllable. Special symbols are:

(a) Prefix “+”: marks an IF as being inserted.

(b) Prefix “-”: marks an IF as being deleted.

(c) Prefix “#”: indicates a change in the following IF due to dialectal influence. Thus “#s”
would mark a standard “sh” changed to “s”.

(d) Prefix “*”: indicates a mispronunciation of the following IF.

(e) Postfix “ v”: indicating a voiced consonant due to the co-articulation, different from
Wu Dialect specific voice consonants as /bb/ and /ff/.

(f) Retroflexed “ r”: indicating retroflexion.

(g) Paralinguistic phenomena and noises are only transcribed when there is no speech
sound. If the noise is mixed with speech, the speech is transcribed, and the noise is
only marked with “?”.

(h) Mandarin 3rd Tone Sandhi.

4. MISC: Miscellaneous non-speech information is provided in this tier.
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Table 32: Labels for non-speech events.

Appendix C: OOV Rates on Test Speakers

Spkr OOV Rates
053 0.057
046 0.038
099 0.026
035 0.023
059 0.017
067 0.017
064 0.014
047 0.013
066 0.013
016 0.0095
012 0.0089
011 0.0086
008 0.0077
043 0.0075
098 0.0075
032 0.0053
054 0.0043
076 0.0024
009 0.0014
061 0.0013
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Appendix D: An Alternative Approach to Dialect Adaptation

(Written by Thomas Zheng and Jing Li)
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Appendix E: Minimal Perplexity Word Segmentation

(Written by Philip Bramsen)
We present a summary of two approaches to improving language model perplexity on a Chinese

corpus by altering the word segmentation. In the first approach, we create ’segmentation models’
that mimic the language model probability distribution and try to directly extract the segmentation
that is ideal for language modeling. The second approach we used the common Maximum Matching
segmentation algorithm and modified the segmentation dictionary to include word concatenations
likely to lower the LM perplexity.

15.1 Introduction.

Automatic Speech Recognition systems are typically built off of words. Syllables, letters, or other
units more basic than words do not contain information about how their word affiliation affects
their pronunciation. Even for Chinese, which has several thousand single character words, words
are necessary units because word affiliation still dictates character pronunciation for the majority of
words, which are multicharacter. Consequently, language models for speech recognition systems
perform best if built off of words.

However, Chinese text lacks word boundaries. Therefore, in building language models for Chi-
nese conversational speech recognition, we come face to face with the need for word segmentation.
Various approaches to Chinese word segmentation have been proposed. Quite possibly, the quest for
good word segmentation has spawned more research in Chinese speech and language engineering
than any other need. For Chinese ASR tasks, the training corpus is first segmented and a language
model is built on the segmented corpus. ASR word segmentation tasks require a fixed dictionary,
to make character words affiliation clear. For a fixed dictionary, Maximum Matching Segmentation
(section 3.2) works just about as well as any segmentation algorithm (Sproat, 2001).

Unfortunately, the segmentation quality of Maximum Matching is arguably dismal, if compared
to the “segmentation” of languages which have word boundaries in written text. There are obvi-
ous flaws: It is inconsistent. It piles errors upon errors, because after an inaccurate segmentation
decision it is often forced to incorrectly segment some a subsequent word into single characters.

There are many ways to approach segmenting Chinese Text. We should not assume beforehand
that the “ideal” segmentation is delineated by a majority vote of Mandarin readers. Granted, a
simple information retrieval task searching for words from a query might need segmentation that
parallels the query, but other tasks are better off with other segmentations. For the purpose of a
particular task, a reasonable goal for word segmentation is the hypothetical segmentation which
yields the best performance for the task. What is the ideal segmentation for language modeling? Is
there a segmentation of Chinese text that would yield the lowest perplexity language model?

We sought to guide Chinese word segmentation toward the best segmentation for the task of
language modeling and, more specifically, language modeling for the task of speech recognition.
Along the way, we took two routes:

First, we built segmentation models that paralleled the language model we were trying to con-
struct; in short, we attempted to use corpus statistics paralleling language model statistics to directly
pick the ideal segmentation. The theory behind this first approach is incomplete, and our results
were limited, though informative.



Dialectal Chinese Speech Recognition: Final Report. 52

Our second attempt to optimize the segmentation was more fruitful: we sought to tweak the
lexicon of a common dictionary-based segmentation algorithm by adding concatenations of words
that are likely to push the segmentation in a direction favorable to language modeling. For both
approaches, our quality metric was the perplexity of language models built off of the segmentations.

15.2 Optimal Segmentation

Starting from the raw, unsegmented task we sought to directly produce the word boundaries that
would bring about the lowest language model perplexity.

15.2.1 Rationale

Consider a string of unsegmented text:

A B C D E F G H I J K L M N

Here each English character represents a Chinese character.
There may be a segmentation people generally agree with (although annotators rarely agree as

well as we might hope (Sproat, 2001)):

A B | C | D E F | G H | I | J | K | L M | N

However, perhaps the best segmentation for a language model would be different:

A B | C | D | E | F | G H | I J K | L M N

Perhaps ‘DEF’ is rare and is better modeled if spelled out (Klakow, 1998). ‘IJK’ may be a phrase
and friendlier to the language model as one word. In addition, language models are constructed from
word bigrams at the minimum. The last character, ‘N’, might always follow ‘LM’; the bigram model
may lose discriminative power if ‘LM’ is distinct from 1N’.

By considering the frequencies of all character sequences (within a reasonable size), we can
pick the segmentation of any sentence that corresponds to the “lowest perplexity” segmentation.
That is, we can segment any sentence to have the units that yield the lowest entropy segmentation
according to the frequencies of all seen words in the training corpus. This might easily be extended
to bigrams as it is in language modeling. The rationale behind our model is that the segmentation
model might be used to directly derive the best segmentation possible for language modeling on the
same corpus.

15.3 Model and Method

We will describe the segmentation model, the method to build it, and methods to apply the model
to segmentation and language modeling.
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Pseudowords We will describe our model in terms of pseudowords. A pseudoword is any string
of characters that is no longer than some bound, k, on the length of the words in the segmentation
model.

When counting pseudowords, there are few constraints, besides that the pseudowords must be
present in the data. Because of the abundance of pseudowords in a text, we set a bound for the length
of pseudowords to rein in the computational complexity. We chose k=4, which is acceptable because
very few Chinese words longer. The sentence-start or sentence-end marker were also included as
pseudowords. Pseudoword bigram frequencies are likely to be dependent on start or end of sentence
location.

Consider the size of the set of pseudowords compared to the number of actual words. The aver-
age word occurring in conversation is roughly two characters long. In a string of ten unique Chinese
characters which be reasonably seen as five dictionary words, there are 34 pseudowords. (The count
ignores sentence start and end markers.) Extend the same rationale to a million character corpus,
and there might be roughly 500,000 “real” tokens but 3.4 million pseudoword tokens. However, the
bigger challenge is the explosion of word types. We observed 160,000 pseudoword types on our
1 million character training corpus when we allowed all pseudowords shorter than five characters.
When we extended the scope of the model to bigrams of pseudowords, the 160,000 observed uni-
grams snowballed into over a million distinct types of pseudoword bigrams in the training corpus.

Inclusion of all pseudowords regardless of whether they are real words points at significant way
that segmentation modeling differs from language modeling. For “thecow” a segmentation mod-
el allows: {“t”,”h”,. . . ,”w”; “th”,”he”,. . . “ow”; “the”,”hec”, . . . “cow”; ”theco”,. . . ; . . . } Clearly,
nonsensical miscreants are invading our data. This is likely to lead to challenging data scarcity
problems. Smoothing techniques developed for language modeling may not be directly applicable
to segmentation modeling because we are throwing in totally useless unigrams and bigrams that are
often merely pieces of real words and often straddle real word boundaries.

Segmentation Model The segmentation model is the smoothed counts of the pseudowords and
bigrams of pseudowords seen on a training corpus. As we used it, the applied segmentation model is
when the segmentation model is used to chose the lowest perplexity segmentation of every sentence.

It is helpful to understand our segmentation model with respect to n-gram language models. By
comparing them, the intuition behind the segmentation model becomes clearer and certain weak-
nesses/strengths come to light. With language modeling, the essence of model itself is contained
in the smoothed, binned, or otherwise manipulated counts of unigrams and n-grams. This even
extends to backoff models, where the smoothed word counts may go through an additional “filter”
that substitutes other probabilities where there are unseen contexts or words. At the end, we can
map any context (n-gram) to a specific probability.

The segmentation model is similar to the language model because it too is a probability dis-
tribution over its basic units. The segmentation model can be seen as a probability distribution
that maps any context to a probability or cost. As with language modeling, we can have counts of
unigrams or n-grams from the training corpus, smoothing, and backoff models. As with language
modeling, model choices all affect the quality of the model. It is reasonable to measure the quality
of a segmentation model by its perplexity, just as with language models.

However, unlike in language modeling, the probability distribution does not define a score or
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cost for any particular sentence. The segmentation model describes the cost of many particular
segmentations of any sentence.

Given the model, how does one select sentence segmentations? We chose to pick the lowest
perplexity segmentation for each sentence. It is this decision which caused us significant problems.
See section 15.3.1 for further discussion.

Building the Segmentation Model The algorithm first builds the segmentation model, then uses
the segmentation model to determine the “best” segmentation of each sentence. This portion of the
algorithm yields the “best” segmentations for each sentence.

1. Gather statistics over the entire corpus:

(a) All pseudoword counts

(b) All pseudoword bigram counts

(c) Sentence start and end markers were included in the counts

2. Smooth the counts, apply language modeling techniques

3. Create FSMs

4. One FSM per sentence, encoding the costs of all segmentations.

5. Find the best paths through the FSMs

The algorithm is flexible in step 2, where we applied language modeling techniques such as
smoothing or binning the bigrams. However, we did not focus on this. We considered these prob-
lems to be very similar to language modeling problems so we focused on the second part of the
algorithm: making use of the best segmentations.

The FSMs (finite state machines) encodes up to four states for each possible word boundary in
the sentence. Each of the four states represents the cost to reach that word boundary from a previous
boundary, one state for each of the possible lengths for the word between the boundaries. Each arc
represents the cost of choosing the word that reaches the state, given the previous word. In this way,
bigrams are uniquely identified: the state the arc starts at is unique to the pseudoword that reached
it, the node the arc reaches is unique to the pseudoword spanned by the arc.

Counting and shaping the model was done in Java. Smoothing was done with SGT.c a common,
internet-available simple good turing smoothing program. The FSMs were formed by Java code and
the best paths were determined using the AT&T FSM tools (GRM Library, 2004).

Applying the Segmentation Model Having derived the “best” segmentations for each sentence,
we tried three different ways to make use of these results.

1. Collect all of the words occurring in the best paths segmentation. Use these words as the dic-
tionary fed to Maximum Matching (or some other segmentation algorithm). Use Maximum
Matching and the new dictionary to segment both the training and the test corpus. Build the
language model off of this segmentation.
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2. Use the segmentation model probabilities derived from the training corpus to find the best
paths segmentations of the training and the test corpus. Do nothing more with the segmenta-
tion. Build the language model off of the training corpus and test it on the test corpus

3. Pick the dictionary for Maximum Matching by cross validation: Divide the training corpus in
ten. Build ten segmentation models, one off of each 9/10ths of the training corpus. Use each
9/10th to find the best paths segmentations of the remaining tenth. Draw words for a fixed
dictionary from the best paths segmentations by using the 1/10ths to vote on each word (e.g.
if the word occurs on 3 of the best path segmentation 10ths, then include it in the Maximum
Matching dictionary).

Baseline Segmentation. When experimenting with these three approaches, we considered
the perplexity of the language model built off of the training and test corpus segmented by
Maximum Matching to be our baseline. The training corpus was one million characters
amounting to one hundred thousand utterances of conversational Chinese transcriptions. The
two components of the training corpus were the Mandarin HUB5 corpus and HKUST’s 100
hour conversational Chinese corpus. The test corpus consisted of several thousand utterances
from test data collected by the Dialectical Chinese Speech Recognition team; these were tran-
scripts of native Shanghainese speakers speaking Mandarin, which is a second language for
them. A second baseline was the language model built off of the character segmentation of the
training and test corpus. Perplexity measurements took unknown word scores into account
and were normalized to the character counts of the test corpus.

Application of the Optimal Segmentation: Feeding a Maximum Matching Dictionary
We used the 160,000 word dictionary derived from the best paths segmentation as the dictio-
nary for a Maximum Matching segmentation of the training. While using this technique, we
tweaked the segmentation model in several ways (binning the bigrams into frequent-enough
and rare, applying smoothing, throwing out low counts). At best, this yielded a language
model perplexity almost double that of the baseline and 10%-15% worse than the character
bigram language model. The motivation for this approach is that giving Maximum Matching
a dictionary pulled from the best paths segmentation might be an improvement over handing
it the baseline dictionary. An examination of the best paths segmentation dictionary and the
training corpus reveals Maximum Matching chose 70,000 of the 160,000 words available to
it. This is roughly five times the vocabulary that the language model built on the baseline
segmentation had to face. In short, the language model was facing tremendous data sparsity
problems.

Application of the Optimal Segmentation: Using it Directly When we built a language
model off the the best paths segmentations of the training and test set the results were still un-
favorable. The language model perplexity was six times that of the baseline. The segmented
training corpus had over 150,000 “words” present, which is ten times the vocabulary that lan-
guage model built on the baseline segmentation had to face. This means the language model
was facing tremendous data sparsity problems.
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Application of the Optimal Segmentation: Cross Validation Word Voting: We used cross
validation to determine the best words to add to the Maximum Matching segmentation algo-
rithm’s dictionary. This yielded the best results, the language model perplexity pushed down
to nearly that of the character segmented baseline. This, however, is still significantly worse
than the baseline dictionary segmentation.

15.3.1 Problems

The project has problems with the theoretical underpinnings of its intuitions as well as prob-
lems with the implementation.

First, we did not prove that the best path segmentations we end up with are actually what we
claim they are: best paths. The mathematics upon which language modeling stands do not
directly apply because we are not using word counts, only pseudoword counts. Pseudoword
counts are free to repeatedly count the same characters towards multiple pseudowords. Equiv-
alently: the counts may be of overlapping pseudowords. This brings into question the proba-
bility distribution we get; just what, exactly, is it?

Second, best path segmentation does not necessarily yield the best path segmentations. The
cost of each pseudoword bigram is based on its frequency. However, all cost related issues
being equal, the total cost of a segmentation consisting only of four character words is roughly
one fourth that of choosing an only single characters segmentation. This problem sometimes
lead to preposterous segmentations consisting of primarily long words. We tried factoring
the length of the words into the bigram cost (by their length, the square of their length, etc.),
but this is an ad hoc measure without justification. In fact, the frequencies of longer words
already penalize their length (they are invariably more rare). This issue exposes a weakness
of the segmentation model.

Third, best paths segmentation has no global-to-corpus constraints. Best path selection may
choose different words for sentences A and B. The segmentation model was built for the entire
training corpus and these pseudo words may indeed the best according to the whole corpus
model. However, the context seen in any particular character sequence strongly determines
what portion of the segmentation model is seen by the best path segmenting step of the the
algorithm that makes use of the segmentation algorithm. This means that different sentences
may segment using essentially different segmentation models. The enormous size of the
segmentation model and the relative distance the optimal segmentation of each sentence may
be from every other sentence means that the optimal segmentation may little bearing on the
optimal segmentation for language modeling.

15.4 A Heuristic Iterative Approach to Segmentation Dictionary Optimization

During the 2004 CLSP Summer Workshop, some of us on the Chinese Dialectal Speech
Recognition Team noted that the perplexity (Manning and Schütze, 2003) of our bigram lan-
guage model depended on the dictionary used for segmentation.
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Figure 15: Mismatches during acoustic modeling

Figure 16: Comparison of various acoustic models with varied account of accented training data

Perplexity
Characters only 88.1
Baseline Dictionary + Maximum Matching 69.2

Table 33: Comparison of the perplexity of the LM built off of two segmentations.
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Figure 17: Comparison between AHAM and acoustic model combination using Max-Posterior-Probability Selection.

Building a language model on characters alone is reasonable; we found the average word
length for our conversational Chinese training corpus to be a little less than two characters
long. The second language model listed was constructed by segmenting our training corpus of
one million characters of conversational Chinese with our baseline dictionary of 50K words
obtained from Tsinghua University in Beijing. To segment we used Maximum Matching,
which has been shown to work about as well as any other algorithm for segmenting Chinese
text.

In addition to the two models above, we noted that adding even a small number of words
to the segmentation dictionary noticeably changed the perplexity of the resulting language
model.

This raises a natural question: Is there a minimum perplexity segmentation? More specifical-
ly, is there a minimum perplexity segmentation dictionary?

15.5 Experiment Construction

Nearly all our language models were bigram models built with the AT&T FSM and GRM
tools (GRM Library, 2004). We also used the SRI language modeling toolkit to build vari-
able length n-gram models (SRI Language Modeling Toolkit, 2004). For the most part, we
depended on Katz-Backoffs and Good-Turing smoothing.

The training corpus was one million characters amounting to one hundred thousand utterances
of conversational Chinese transcriptions. The two large components of the training corpus
were the Mandarin HUB5 corpus and HKUST’s 100 hour conversational Chinese corpus.
Another several thousand utterances were from test data collected by the Dialectical Chinese
Speech Recognition team; these were transcripts of native Shanghainese speakers speaking
Mandarin, which is a second language for them. Perplexity measurements took unknown
word scores into account and were normalized to the character count of the test corpus.

We focused on bigram word models because: 1) The word models outperformed the character
based models. 2) The bigram models beat out the trigram models.
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Figure 18: Labeling example with the Praat editor.

The language modeling task was particularly challenging for two reasons:

(a) There is very little usable transcribed conversational Chinese publicly available. At one
point, we were desperate enough to search the web for transcriptions of Chinese soap
operas.

(b) The training corpus is not an ideal match for the test corpus. Recording situations and
topics of conversation were not the same. The year and location of the recordings also
affected the content. We did not have the luxury of ensuring these criteria were matched.
However, this is a common problem faced by Chinese ASR today.

We did investigate other forms of smoothing, and found similar results. At the very end of the
workshop, Dietrich Klakow, a member of another team at the 2004 CLSP Summer Workshop,
used his language modeling tools and produced models on our data where the trigram edged
out the bigram model.
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15.6 Maximum Matching

Maximum Matching (Manning and Schütze, 2003) is one of the simplest segmentation algo-
rithms: Given a string of characters and a lexicon, find the longest word that both starts at
the left edge of the string and is in the lexicon. Accept the right edge of that word as a word
boundary and continue segmenting the remainder of the string.

The intuition behind Maximum Matching is that strings of characters that are words are un-
likely to occur by chance. Taking 5000 characters as a reasonably sized Chinese character
set, there are 25 million two character combinations, and 125 billion three character com-
binations. Add to this the fact that a typical ASR dictionary is constrained to about 50,000
lexical entries, and we can see the probabilities work out in favor of Maximum Matching’s
success.

For example, suppose English lost its spaces:

theirgardenisovergrown

Suppose that while losing all our spaces, we managed to retain a dictionary:

den, gar, garden, the, their...

Maximum Matching would hopefully pick out the correct sentence sentence:

their garden is overgrown

At the left end of the sentence, their is the longest word. After their, garden is the longest
word, and so on.

Maximum Matching does not help resolve segmentation ambiguities, as the following exam-
ple illustrates:

Heateraresteakstrips

Which Maximum Matching segments into:

heater are steaks trips

In this rather contrived example, we see that Maximum Matching incorrectly parses the orig-
inal sentence, which was “He ate rare steak strips.” Instead of dealing with ambiguities,
Maximum Matching opts to ignore them, choosing to pick whatever long words it finds first.
It only takes one error to botch a sentence or force a portion of the sentence into single char-
acters. Nevertheless, it turns out that in the real world the algorithm works about as well as
any other segmentation approach when a fixed dictionary is required.
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15.7 Dictionary Optimization - Motivation and Concept

In an effort to reduce the language model perplexity, we attempted to build a better segmen-
tation dictionary than the baseline dictionary we had. We did this by concatenating bigrams
of words that tended to occur together to form new dictionary entries.

More precisely, the concatenated bigram w1w2 was added if the following criteria were met:

C(w1, w2) > TC(w1,w2)
C(w1,w2)

C(w1)
> Tw1%

C(w1,w2)
C(w2)

> Tw2%

Here C(.) means count-of, TC(w1,w2) is the threshold for how frequently a bigram must occur
to be considered, Tw1

% and Tw2
% are thresholds for the percentage of the occurrences of

the individual words accounted for by their appearance in the bigram. The first threshold
acts to ensure the bigram is frequent enough for the information to be worthwhile. The other
thresholds act as a measure of the coocurrance of the words.

Note that the measure bears resemblance to mutual information, which has generally respect-
ed value as a measure of cooccurrence. It also bears resemblance to work detailed later in this
section where simple counts outperformed more complicated measures like mutual informa-
tion (Klakow, 1998).

MI = C(w1, w2)log
(

C(w1,w2)
C(w1)C(w2)

)

Some similar approaches have attempted to minimize entropy or the description length of
the training corpus (e.g. (de Marcken, 1996)). However, our algorithm (described shortly),
attempts to minimize perplexity directly using experimental exploration.

Many of the words we found with this technique were reasonable lexical units or common
phrases.

These bigrams were generated with the thresholds TC(w1, w2) = 5 and Tw1% = Tw2% =

0.5. “Say clearly,” “not easy,” “not know,” and “in school” can all be seen as phrases. “Cell
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phone” was actually missing from the baseline dictionary. “Electronic products” is a reason-
able lexical entry. “Masked Palm Civet,” which goes by the Latin name Paguna larvata, is
a small 20-inch long mammal with orange, red, or yellow fur, and a stripe down its face.
The Mandarin for “Masked Palm Civet” is also the name of a fruit company, which is more
likely to have been the topic of the conversation. These results suggest the words found are
reasonable.

15.8 Algorithm

The algorithm we used to make use of dictionary optimization ran as follows:

(a) Start with a segmentation, determine new words from training corpus

(b) Re-segment with the new dictionary

(c) Build a language model

(d) Use the LM perplexity as the score of the new segmentation

First, a segmentation starting point is needed. This could be characters, pre-segmented text,
or even randomly segmented text. Statistics for the words in the segmented training corpus
are collected and every bigram is evaluated by the three criteria mentioned above. Bigrams
exceeding all three thresholds are added to the segmentation dictionary.

The new dictionary is used to re-segment the training and test corpus. To evaluate the new
dictionary and the segmentation, a language model is built on the segmented text and the
language model perplexity is calculated.

The newly segmented text contains new words. Iterating through the algorithm again will
unearth new bigrams to contribute to the dictionary. There are two reasons for this: First,
bigrams found in one iteration can be components of bigrams in a later iteration. Second,
Maximum Matching jostles the segmentation around. The jostling reveals more likely candi-
dates for concatenations, but also reminds us there is no guarantee the words will be noticed
by Maximum Matching.

The iterations may continue until language model perplexity ceases to improve.

Perceiving the Parameter Space of the Problem: Previous work on language model op-
timization via word concatenation apparently has not considered the problem as a parameter
space. In our experiments, we discovered that the best results came from allowing the thresh-
olds for word concatenation to change at each iteration.

The parameter space can be seen as a tree. The root node is the original segmentation of the
text. One layer down, each node represents a different set of thresholds for word concatena-
tion. There is no reason to believe that the tree must be walked by making exactly the same
decision at each node. In fact, we found through experimentation that we could get better
results if we looked at the sister nodes at each level and examined all “nearby” nieces and
nephews of the best performing node. Another successful experiment involved successive
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Perplexity
Baseline Dictionary 69.19
First Iteration Best (C=5, 3%, 3%) 68.30
Second Iteration Best (C=5, 4%, 4%) + (C=5, 4%, 4%) 68.09
Character-based variable-length (9)-gram model 77.29

Table 34: Perplexity results starting with baseline dictionary.

Perplexity
Baseline Character Dictionary 88.05
First Iteration Best (C=5, 2%, 2%) 75.03
Second Iteration Best (C=5, 3%, 3%) + (C=5, 3%, 3%) 73.67
Character-based variable-length (9)-gram model 77.29

Table 35: Perplexity results starting with character dictionary.

relaxations of the thresholds at each iteration. This ensured that the more certain words were
added first.

In our implementation, the algorithm was heavily supervised by manual decisions at each
iteration. We did this to explore the utility of the algorithm in the short time we had at the end
of the workshop. However, exploration of the parameter space could be automated. Automa-
tion could be quite difficult without more evidence for particular approaches to searching the
parameter space. At the minimum however, frameworks such as successively relaxing the
thresholds or restricted breadth first search might be useful. Continued research may reveal
heuristics to enhance automation.

15.9 Experiments

In the week we worked on this project, we ran several experiments. The early ones gave us
some intuitions about the value of the technique; the last few experiments are reported here.

15.9.1 Experiments - Iterating from Baseline Dictionary Segmentation

We started with text segmented by the baseline dictionary and Maximum Matching. The
threshold TC(w1, w2) was varied between 2 and 20, and the thresholds Tw1% and Tw2%
were varied between 1% and 90%. Due to time constraints, we did not manipulate the latter
two independently.

15.9.2 Experiments - Iterating from the Character Segmented Data

Starting from unsegmented text-text segmented into characters-we repeated the above exper-
iment.
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15.9.3 Testing the LM with the ASR System

We rescored the lattice of with the lowest perplexity language model we found. This resulted
in a small (0.1%) reduction in the character error rate of the total system. However, this is not
entirely fair since the language model was selected by using the test corpus used for scoring
decoding. On the other hand, word affiliation pronunciations were not added to the ASR
system for the new words. We believe further reductions in character error rate are possible.

15.10 Related Work – Improving Language Models with Multiwords

Previous work exists on optimizing language models by concatenating words (Klakow, 1998;
Ries, Buo, and Waibel, 1996). The motivation for this work is recognition of the fact that
the ideal units for language modeling are not necessarily the words given by typical written
text. A language model built on the text of all CLSP Summer Workshop Proposals might be
improved if certain common phrases were concatenated into words or rare words were broken
into regular components. In speech recognition, rare words might be best understood by
looking at their syllables independently. Therefore, much of the research into concatenating
words also investigates dividing words.

Another motivation is to mimic text-compression techniques. One approach to text compres-
sion is to strive to have symbols for the compressed form all of identical length and basic
units of nearly identical frequency. Finding “multiwords” or doing “corpora mapping” means
finding common phrases and making them words in the text, but generally only when this
creates better word and or bigram frequencies.

It appears the technique of concatenating words became more successful when minimizing the
language model perplexity directly became the goal. Typical approaches to LM optimization
run as follows:

(a) Acquire corpus statistics

(b) Rank bigrams according to cooccurrence metric

(c) Select a set of words to redefine as phrases in the corpus

(d) Restructure the corpus: map it according to the new phrases found, possible breaking
apart other concatenations found in previous iterations or breaking a par

(e) Return to step (1)

Some cooccurrence metrics are (this list is taken pretty much directly from (Klakow, 1998;
Ries, Buo, and Waibel, 1996):

(a) mutual information

(b) bigram frequency

(c) backward bigram: p(w1|w2)

(d) backward perplexity: log(p(w1|w2)) measures the change in the unigram likelihood
measure of the training data (Klakow, 1998)
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Variations on the techniques include breaking the unknown words into their spellings or syl-
lables. Some variations suggest intentionally considering the word boundary tendencies of
the language on which the language modeling is being done (Larson et al., 2000).

15.11 Analysis

In this section I make the case for why dictionary optimization in Chinese segmentation is
different from the creation of multiwords in language model optimization. I will also attempt
to argue for a new approach to searching for multiwords and split-able words in both tasks.

15.11.1 Successes and Limitations of Previous Approaches

Research into the use of multiwords for language model optimization can be summarized
as follows: For bigram models, adding multiwords can reduce the size and perplexity of
the model. For trigram and larger models, the advantage afforded by multiwords weakens
becomes insignificant as the size of the training corpus grows. Of course, for large corpora,
the trigram significantly outperforms the bigram, whether or not the bigram has multiwords.

15.11.2 Why Chinese Segmentation is Different:

Chinese Speech and Language Processing is different from optimizing language model per-
plexity for “presegmented” languages for two reasons.

First, Chinese text is originally unsegmented, therefore modifying the dictionary by word
concatenation and segmenting with the new dictionary is not directly comparable to concate-
nating words found in English text. In unsegmented Chinese text, information about words
is simply not present. Information about the location of words is valuable for language mod-
eling, even though commonly accepted word boundaries not necessarily the truly ideal basic
units. This is confirmed by the fact that even if Chinese text is segmented with Maximum
Matching, the word based language model built on the segmented text outperforms a model
trained on character segmented text.

However, fixed dictionary segmentation of Chinese is clearly clumsy, often giving bizarre
segmentations that have obvious inaccuracies. Given ASR’s need for a fixed dictionary, we
are forced to seek clever ways to optimize the segmentation while continuing to segment with
a dictionary.

This strongly suggests that lessons from the successes with multiwords be brought into play
in the Chinese text segmentation subfield of NLP. Using word concatenation to iteratively
improve the segmentation dictionary or directly improve the segmentation after an algorithm
like Maximum Matching might significantly improve Chinese language modeling.

Second, Chinese colloquial speech recognition research faces the challenge of limited data.
This means that even given the acknowledged limitations of multiwords for language model
optimization for languages with word boundaries, they are likely to be useful in the near future
for Chinese ASR. Word concatenation techniques, combined with techniques for breaking
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apart unknown words, are useful even for trigram language models built on the 40 million
word Wall Street Journal Corpus, Chinese ASR has much less data at its disposal.

This second observation argues that determining good ways to accomplish useful phrase con-
catenation and word splitting techniques to layer on top of word segmentation would benefit
Chinese ASR.

These observations suggest that techniques to use optimal dictionaries and post-segmentation
multiwords search during Chinese text segmentation would be very useful contributions to
speech and language engineering.

15.11.3 Better Approaches to Finding Multiwords

Making language model perplexity the guide for selecting multiwords is more successful than
finding multiwords purely by picking words dependant on word cooccurrence scores. How-
ever, this means that under this best metric there is no clear way to be certain the multiwords
chosen at one iteration will be best for language model optimization in the next iteration.

Even in our few shallow experiments, the best parameters for the first iteration were rarely the
best parameters for the later iterations. Moreover, taking less desirable segmentations early
on actually led to better segmentations later.

This suggests that the conception of a parameter space introduced in section 2.5 should be
exploited to enhance the search for better segmentations.

At this point we can ask what might seem a strange question: Given that we are making
language model perplexity our goal, might we use any of several cooccurrence measures
to suggest word concatenations at any iteration? Why compare them independently, as is
normally done? Why not use several at once? The mathematics becomes ridiculous, but
already several purely heuristic approaches that amount to guess and check have proved their
worth. Perhaps the different heuristics yield complementary multiword contributions.



Appendix F. Spontaneous Wu-Dialectal Chinese Speech Recognition 
 
16.1 Introduction (Project goal) 

 
There are eight major dialectal regions in addition to Mandarin (Northern China) in China, 

including Wu (Southern Jiangsu, Zhejiang, and Shanghai), Yue (Guangdong, Hong Kong, 
Nanning Guangxi), Min (Fujian, Shantou Guangdong, Haikou Hainan, Taipei Taiwan), Hakka 
(Meixian Guangdong, Hsin-chu Taiwan), Xiang (Hunan), Gan (Jiangxi), Hui (Anhui), and Jin 
(Shanxi). These dialects can be further divided into more than 40 sub-categories. Although the 
Chinese dialects share a written language and standard Chinese (Putonghua, or PTH) is widely 
spoken in most regions, speech is still strongly influenced by the native dialects. This great 
linguistic diversity poses problems for automatic speech and language technology. Automatic 
speech recognition relies to a great extent on the consistent pronunciation and usage of words 
within a language. In Chinese, word usage, pronunciation, and syntax and grammar vary 
depending on the speaker's dialect. As a result speech recognition systems constructed to process 
standard Chinese perform poorly for the great majority of the population.  

There are many research works focusing on pronunciation variation modeling and accent 
speech recognition. [Strik 1999] gives a good overview about the pronunciation variations and 
[Huang 2001] shows the recent research work on accent Chinese speech recognition. 

The goal of our summer project is to develop a general framework to model phonetic, lexical, 
and pronunciation variability in dialectal Chinese automatic speech recognition tasks. The baseline 
system is a standard Chinese recognizer. The goal of our research is to find suitable methods that 
employ dialect-related knowledge and training data (in relatively small quantities) to modify the 
baseline system to obtain a dialectal Chinese recognizer for the specific dialect of interest. For 
practical reasons during the summer, we focused on one specific dialect, the Wu dialect. And we 
referred to the Chinese influenced by the native Wu dialect as Wu Dialectal Chinese (or WDC). 
However the techniques we intend to develop should be broadly applicable.  
 
16.2 Speech Database Collection & Division 
16.2.1 Standard Chinese Speech Corpus for Baseline System 

 
The Mandarin Broadcast News (MBN), a read style standard Chinese speech corpus with 

Chinese initial/final (IF) transcriptions provided by JHU, was used to train the acoustic model for 
Standard Chinese Recognizer, e.g. our baseline system. MBN contains about 30 hours’ high 
quality wideband speech. Till now, it is the best choice for us to build our baseline system, though 
the channel, speaking style and accent are totally different. 
 
16.2.2 Wu-Dialectal Chinese (WDC) Speech Corpus 

 
The Shanghai dialect is a sub-dialect belonging to the Wu dialect, one of the main Chinese 

dialects, and it is often called “standard Wu dialect”. So, the Shanghai Putonghua is a good choice 
to study the common effect of the Wu sub-dialects. The Wu-Dialectal Chinese corpus was 
carefully designed, collected and transcribed before this workshop. It mainly contains two parts, 



the di-IF balanced read speech part and the spontaneous speech part [Li 2003], and the 
spontaneous speech part has been chosen for use in this summer workshop. 

For the spontaneous speech corpus, unlike designing prompting texts for read speech, some 
topics are pre-defined. Each speaker will be asked to select a topic to talk with another person 
when collecting the speech data. In this way, the collected speech may be relatively natural and 
more spoken language phenomena can be covered. In this paper, 5 main topics (Sports, Politics & 
Economy, Entertainment, Lifestyle, Technologies) and some corresponding sub-topics are 
designed. 

Totally, the spontaneous WDC speech corpus contains 100 Shanghai native speakers’ speech 
data, including 50 males and 50 females, and each speaker has about 5-6 minutes' speech data, but 
only about 3 minutes has the IF transcriptions. Four-layer transcriptions has been made manually 
for this corpus, including the Chinese character layer, the canonical Chinese pinyin layer, the 
surface form Chinese IF layer and the miscellaneous layer. 
 
16.2.3 WDC Speech Corpus Division 

 
Twenty speakers’ data (about 1.7 hours), containing ten strongly accented (or More Accent, 

MA) and ten weakly accented (or More Standard, MS) speakers, are chosen as the Test set, while 
the rest 80 speakers’ data (about 6.3 hours) as the Developing Train (DevTrain) set. Then, a small 
data set called Developing Test (DevTest) set, containing twenty speakers’ data is picked up from 
the DevTrain set. The details of the Test set & DevTest set are shown in Table 1 and Table 3. 

 
Table 1. Test Set Speaker Info (20 speakers) 

 

Speaker-ID Gender Accent 
PTH  
Level 

Speaker-ID Gender Accent 
PTH 
Level 

032 m MA 3B 008 m MS 2A 
035 m MA 3B 009 m MS 2B 
043 m MA 3A 011 m MS 2B 
046 m MA 3A 012 m MS 2B 
047 m MA 3A 016 m MS 2B 
053 f MA 3B 054 f MS 2B 
059 f MA 3B 061 f MS 2B 
076 f MA 3B 064 f MS 2B 
098 f MA 3A 066 f MS 2A 
099 f MA 3B 067 f MS 2A 

 
 

The PTH Level is some different from the Accent Extent, it considers many aspects including 
accent, fluency, and so on, and is judged by experts. In our experiments, they are consistent to the 
Test set. The Test set can also be separated into different sub-sets corresponding to Age, Gender, 
Education Level, and so on. Table 2 shows the details of the separations. 

 
Table 2. Groups of Speaker in Test Set 



 

Sub-Set Speaker-ID 

AO (Age Old, >40) 043,046,047,053,054,059,076,098,099 
Age 

AY (Age Young) 008,009,011,012,016,032,035,061,064,066,067 
GM (Gender Male) 008,009,011,012,016,032,035,043,046,047 

Gender 
GF (Gender Female) 053,054,059,061,064,066,067,076,098,099 
EH (Education High) 008,009,011,012,016,032,035,043,061,064,066,067,076,099 

Education 
EL (Education Low) 046,047,053,054,059,098 
MS (More Standard) 008,009,011,012,016,054,061,064,066,067 

Accent 
MA (More Accent) 032,035,043,046,047,053,059,076,098,099 

 
The detailed information of the DevTest set used in our experiments is shown in Table 3. The 

speech data and the Pinyin and IF level transcriptions have been used to adapt the acoustic model 
and the lexicon. 

Table 3. DevTest Set Speaker Info (20 speakers) 
 

Speaker-ID Gender PTH Level Speaker-ID Gender PTH Level 

001 m 3A 055 f 3A 
003 m 3A 060 f 2B 
004 m 3A 063 f 2B 
013 m 3A 065 f 3A 
017 m 3A 069 f 2A 
018 m 2B 081 f 3A 
026 m 3A 085 f 3A 
036 m 3A 090 f 2B 
037 m 3A 094 f 3A 
050 m 3A 095 f 2B 

 
 
17 Proposed Framework for WDC recognizer 

 
As mentioned earlier, there are too many different dialects in China, so, it is too difficult and 

expensive to design and collect a speech corpus big enough to retrain a new acoustic model and 
build a dialect specific recognizer for each dialect. We are trying to use the WDC data as few as 
possible so as to verify the feasibility of the idea of developing a framework for deriving a 
dialectal Chinese recognizer from an existing PTH recognizer with less effort. And we hope the 
techniques can be easily extended to build other dialectal Chinese speech recognizer. 

We want to catch the following varieties to change the PTH recognizer to obtain a dialect 
specific recognizer: 

• Phonetic variability 
• Lexical variability 
• Pronunciation variability 
Our research focused on how to extract the dialect-related knowledge, such as the IF 

mapping, syllable mapping, cross-dialect synonyms, and so on, but use only a small quantity of or 



even lacking adaptation data to improve the recognizer.  
During pronunciation modeling, the adaptation of the acoustic model and the lexicon are 

considered. MLLR is used to adapt the acoustic model, while the extracted IF/Syllable mapping 
rules are used to refine the lexicon. Different from the traditional adaptation methods, we use the 
surface-form IF transcriptions to supervise the adaptation instead of the base-form transcriptions. 
Indeed, these IFs really sound like the surface-form, and are mostly different from the base-form, 
e.g. phone changes often happen. The base-form based adaptation might be more efficient to 
modify the parameters so as to model the real thing the speaker wants to speak. However, the 
model could most possibly be more scattered and would be more confused with other model, such 
as sh and s. Essentially, it is combining two or more totally different units together in most cases. 
This would not happen when using the surface-form based adaptation, but we should give more 
precise pronunciation lexicon to get the correct recognition results. 

In our experiments, we use only the small set, i.e. the DevTest set, to improve the recognizer. 
It contains about 1 hour speech data, including 20 Shanghai speakers’ speech and 3 minutes for 
each speaker. 

 
18 Baseline System 

 
The baseline system is the PTH recognizer. The HTK3.2.1 tool [Young 2002] are used to 

train and adapt the acoustic model, while the SRILM tools are used to get the word Bi-gram 
language model. Context-Dependent IFs are chosen to be the speech recognition units (SRUs). 
Each unit is modeled using left-to-right non-skip 3 or 4 states continuous HMM. Each state has 14 
Gaussian mixtures. 39-dimensionaml MFCC coefficients with Cepstral Mean Normalization 
(CMN) are used as the features. MBN database are used to train the acoustic model. Language 
model is built on HKUST 100 hour CTS data, plus Hub5, plus Wu-Dialectal Training Data 
Transcriptions. Totally, 72.17% of Character error rate (CER) is obtained when directly using this 
PTH recognizer to test the Test set. The results are extremely low mainly because of different 
channel, speaking style and accent. 
 
19 Dialect-Related Knowledge Extraction & Pronunciation Modeling 

 
Our research focuses on acoustic adaptation, extraction and application of the dialect-related 

knowledge to multi-pronunciation lexicon, which includes: 
 

• Context-Free PTH-IF mapping rules (Lexicon) 
• Context-Free WDC-IF mapping rules (AM+Lexicon) 
• Syllable-Dependent WDC-IF mapping rules (AM+Lexicon) 
• Multi-Pronunciation Expansion (MPE) based on unigram probability (AM+Lexicon) 
• Perform rank-based AM rescoring (Future work) 

 
19.1 Context-Free PTH-IF Mapping based PM 

 
It is easy to find that the dialect specific pronunciation variations are mainly occurred in IF 

layer for Wu-dialectal Chinese. So, we concentrate on IF level pronunciation modeling. Some 



common and obvious IF mapping rules provided by linguistic experts are as follows: 
• (zh, z) (z, zh) 
• (ch, c) (c, ch) 
• (sh, s) (s, sh) 
• (eng, en) (en, eng) 
• (ing, in)  (in, ing) 
• (r, l) 

We can also see the above mappings in Table 4, a sub-set of the Context-Free PTH-IF Mapping 
Rules (Table 5). It is obvious that expert’s knowledge based mapping rules have been covered by 
the rules extracted from the manual transcriptions. The probability (Prob.) represents the 
proportion of the phone change from a specific base-form to a specific surface-form. 
 

Table 4. Expert’s Knowledge Related Context-Free PTH-IF Mapping Rules  
Extracted from DevTest (Sub-set of Table 5.) 

 
base 
form 

surface 
form 

Prob.(%) 

zh z 73.21 
ch c 81.63 
sh s 54.17 
s sh 10.00 
r l 22.05 

eng en 29.67 
en eng 17.63 
ing in 10.77 
in ing 35.12 
iii ii 50.69 
ii iii 16.67 

 
The Context-Free PTH-IF mapping rules generated from DevTest set are shown in Table 5. 

The first column is the base-form IFs, e.g. the PTH-IFs, and the second column is the surface-form 
IFs, generated from the original manual IF layer transcriptions. The right-most column is the 
phone change probability, only the changes exceeding a certain threshold, e.g. the total counts and 
the probability, can be reserved. Self-mapping should be reserved for presenting the standard 
pronunciations. 

Then the Context-Free PTH-IF mapping rules are used to generate the multi-pronunciation 
lexicon. The acoustic model is not changed in this experiment. an absolute CER reduction of 0.5% 
is obtained after using PTH-IF mapping rules. 

 
 

Table 5. Context-Free PTH-IF Mapping Rules 
 
Base 
form 

Surface 
form 

Prob. 
(%) 

Base 
form 

Surface 
form 

Prob. 
(%) 

Base 
form 

Surface 
form 

Prob. 
(%) 

a a 88.57 iao iao 87.69 r l 22.05 



ai ai 91.29 iao e 5.03 s s 84.38 
an an 91.73 ie ie 94.16 s sh 10.00 
ang ang 91.58 ii ii 83.33 sh s 54.17 
ao ao 94.09 iii ii 50.69 sh sh 32.18 
b b 91.75 iii iii 35.10 t t 90.64 
c c 85.83 in in 57.85 u u 92.72 
ch c 81.63 in ing 35.12 ua ua 88.98 
ch ch 11.56 ing ing 80.33 uai uai 78.72 
d d 91.37 ing in 10.77 uan uan 91.40 
e e 91.99 iong iong 94.00 uang uang 86.21 
ei ei 94.12 iou iou 90.44 uei uei 92.43 
en en 73.90 j j 91.38 uen uen 73.33 
en eng 17.63 k k 94.55 uo uo 92.90 
eng eng 64.23 l l 93.32 v v 90.20 
eng en 29.67 m m 96.19 van van 84.47 
er er 96.36 n n 93.85 ve ve 90.08 
f f 90.69 ng ng 93.02 vn vn 74.29 
g g 91.39 o o 84.00 x x 92.22 
h h 86.23 ong ong 91.20 z z 86.50 
i i 92.17 ou ou 84.20 zh z 73.21 
ia ia 93.94 p p 93.99 zh zh 16.60 
ian ian 94.01 q q 94.53    
iang iang 89.66 r r 65.75    
 
The recognition results will be shown in section 5.4 
 
19.2 Context-Free WDC-IF Mapping based PM 

 
What we discussed in the previous section is the in-set PTH-IF mappings, that is to say, each 

mapping is from an PTH IF to another PTH-IF. As a matter of fact, there are some Wu dialect 
Chinese specific IFs (WDS-IF), such as “io^”, occurring in the speech data. Totally, 13 WDS-IFs 
are selected corresponding to their frequencies in the DevTest set. The WDS-IFs and the PTH-IFs 
form the WDC-IF set. The context-free mapping rules from PTH-IF to WDC-IF extracted from 
DevTest set are shown in Table 6. The rows with gray background are extended new WDC-IFs. 

 
 

Table 6. Context-Free WDC-IF Mapping Rules 
 

PTH-IF WDC-IF Times Prob(%) Is In-Set Mapping? 
ai e> 109 21.29 No 
ao o^ 138 47.10 No 
c ch 4 6.45 Yes 

ch c 96 78.40 Yes 
en eng 51 15.64 Yes 

eng en 39 21.91 Yes 



er eer 16 66.67 No 
iao io^ 152 51.70 No 
ie ie< 38 22.62 No 
iii ii 262 46.62 Yes 
in ing 72 42.35 Yes 

ing in 8 3.77 Yes 
iong ioong 13 46.43 No 
iou iuu 164 36.12 No 
iou ieu 152 33.48 No 
n ni 87 18.32 No 
o e 2 16.67 Yes 

ong oong 79 41.15 No 
ou eu 164 68.91 No 
r l 46 34.59 Yes 

sh s 494 58.84 Yes 
ve voe 55 55.00 No 
ve voong 4 21.05 No 
zh z 230 64.77 Yes 

 
• 11 mappings from PTH-IF to PTH-IF (excluding the self-mapping rules) 
• 13 mappings from PTH-IF to non-PTH-IF, with 13 new IFs introduced as follows, which 

can be adapted from their corresponding PTH-IF using the DevTest Set. 
  e>, o^, eer, io^, ie<, ioong, iuu, ieu, ni, oong, eu, voe, voong 
 
19.3 Syllable-Dependent WDC-IF Mapping based PM 

 
We are discussing context-dependent WDC-IF mappings (syllable-dependent IF mapping) in 

this section. Indeed, in previous sections, some context-dependent mapping rules have been 
considered, for instance, when Initial “sh” in Syllable “shi” is changed to “s”, the Final should not 
be “ii”, it should be changed to “iii”, because the “i”, “ii” and “iii” are syllable-dependent. We 
hope to obtain more precise mapping rules after introducing the context influences. 

Syllable-dependent WDC-IF mappings are used to generate the multiple-pronunciation, while 
the surface-form base MLLR technology is used to improve the acoustic model. After using it, the 
recognizer becomes worse than other methods. We think the main reason is because we have no 
enough data to learn syllable-dependent mapping rules. 
 
19.4 Multi-Pronunciation Expansion (MPE) based on Accumulated Unigram Probability 

 
More pronunciations help model pronunciation variations, but also lead to more confusion, 

there should be tradeoff. In our experiments, Accumulated Unigram Probability (AUP) used as the 
criterion: 

• Only words with higher unigram probabilities will each have multiple pronunciations; 
• Words with lower unigram probabilities will each have a single standard pronunciation; 
Table 7 shows the AUP that used to reduce the size of multi-pronunciation lexicon. The first 

column is the designed accumulated word unigram probability, and the other columns shows the 



actual accumulated word unigram probability, log-probability threshold and how many words 
exceeding the threshold, e.g. they can have multi-entries. 

 
Table 7. Accumulated Unigram Probability 

Actual Designed 
Accumulated 

Prob. 
Accumulated 

Prob. 
Log Prob. 
Threshold 

#Words 

0.10 0.10782136 -0.967295 1 
0.20 0.21344301 -1.719572 5 
0.30 0.30682193 -1.940906 12 
0.40 0.40467247 -2.258349 25 
0.50 0.50225045 -2.442327 47 
0.60 0.60066204 -2.757656 87 
0.70 0.70055931 -3.153711 176 
0.80 0.80018502 -3.594763 416 
0.90 0.90050580 -4.240960 1,292 
0.92 0.92081776 -4.419749 1,735 
0.94 0.94120825 -4.624082 2,427 
0.96 0.96064531 -4.867548 3,543 
0.98 0.98000226 -5.250755 5,838 
1.00 1.00000000 No 15,724 

 
19.5 Primary Results 

 
The primary results are show in Figure 1 and Figure 2. The Figure 1 shows the CER of the 

baseline system and other proposed methods, including context-free PTH-IF mapping, 
context-free WDC-IF mapping plus MLLR, for different group of speakers (See Table 2). The 
MPE method uses the 94% log probability as the threshold. It is obvious that proposed methods 
can effectively reduce the CER, especially for the EL (Educational Low) speakers. 
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Figure 1. CER curves for different sub-sets & methods 

 
 
Figure 2 shows the CER curve when using different threshold to reduce the lexicon size for both 
the base form and the surface form MLLR. 0% means using only single entry, while 100% means 
using all the possible entries for each word. For n% (0<n<100), only the high frequency words 
that accumulated the unigram probability up to n% can use the multi-entries, while other words 
can only use the single pronunciations. We can see that the MPE method is effective to refine the 
acoustic models, and the surface form MLLR is better than the base form MLLR method when we 
using only 20 speakers data to adapt the acoustic models. 
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Figure 2. CER and Vocabulary Size curve with MPE 

 
20 Conclusions 

 
An extensible Framework for Dialectal Chinese Speech Recognition is proposed. Our 

research focuses on how to extract the dialect-related knowledge, such as the Chinese IF mapping, 
syllable mapping, cross-dialect synonyms, and so on, but use only a small quantity of or even 
lacking adaptation data to improve the recognizer. The context-free PTH-IF mapping, context-free 
WDC-IF mapping and syllable-dependent WDC-IF mapping combining with the surface-form 
based MLLR acoustic adaptation are performed to modify the PTH recognizer to fit the WDC 
speech recognition task in our experiments. For more efficiency, Multi-Pronunciation Expansion 
(MPE) based on Unigram Probability is used to reduce the size of lexicon. After these experiments 
we get such conclusions: 

• We can expect that using WDC recognizer to recognize PTH, the performance will 
degrade, but we would expect it will not decrease too much, because we use the surface 
form to adapt the acoustic model instead the base-form transcriptions 
By using the WDC recognizer, we get 

– Over 10% CER reduction to recognize WDC; 
– CER increase of only 0.62% to recognize PTH. 

• The use of knowledge is useful and effective 
• The MPE method is effective to refine the acoustic models, and the surface form MLLR 

is better than the base form MLLR method when we using only 20 speakers data to adapt 
the acoustic models 

• In this project, there are several problems to solve, including: channel, speaking-style, 
dialect background, and domain mismatches. 

– It is easier to solve all these problems by simply using the adaptation method; 
– Our method focuses only on the dialect problem; 
– The results using our method could be better if we integrate those methods 

related to channel, and speaking-style. 
 
21 Future work 
 
Our future plan after this workshop includes 

• Continue on the current project, including: 
– Investigating the syllable-dependent mapping 
– Rank-based Rescoring based on IF lattices 

• Language Model Adaptation 
– Different word form with same meaning 

• Such as: 喜欢 vs. 欢喜 - like; 做饭 vs. 烧饭 - cook 
• Linguists say the vocabulary similarity rate between Putonghua and Wu 

dialect is about 60~70%. 
– Different word order 

• 你先走 (you first go) vs. 你走先 (you go first) 
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