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Status Report: Outline

. Review of the paradigm

. Experiments that have been used in rescoring

— SVM: training on Switchboard vs. NTIMIT

— Acoustic features: MFCCs vs. rate-scale

— Training the pronunciation model

— Event-based smoothing with, w/o pronunciation model
— Results for one talker in RT03-devel

. Ongoing ex
. Ongoing ex
. Ongoing ex

neriments: Acoustic modeling
periments: Pronunciation modeling

periments: Rescoring methods



1. Landmark-Based Speech Recognition
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Acoustic Feature
Vector: A
Spectrogram
Snapshot (plus
formants and auditory
features)
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Two types of SVMs: landmark detectors
(p(landmark(t)), landmark classifiers (p(place-

features(t)|landmark(t))

2000-dimensional acoustic feature vector
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Event-Based Dynamic Programming
smoothing of SVM outputs

* Maximize TIT; p( features(t;,) | X(t;)) ) p(ti,,-t; | features(t))
* Forced alignment mode:
computes p( word | acoustics ); rescores the word lattice

e Manner class recognition mode:
smooths SVM output; preprocessor for the DBN
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Pronunciation Model: Dynamic
Bayesian Network, with Partially
Asynchronous Articulators

Canonical Pronunciation of "everybody" Pronunciation Variant: "erwodi"
open f open —‘ l_
& glide & glide
fric fric
closed : ! - ! - ! : ! closed - ! ! ! !
eh v er iy b ao d iy eh r w ax d iy
open E— open —
2 LI ¢ el L
B glidet . B glidet
a . a .
fricH 1 fricH
closed ! ! ! = ! . . = closed . -
eh v er iy b ao d iy eh r w ax d iy
lowt ﬁ 1 lowt
Z opent 8 Z opent
8 glidef 8 glidef
fricr . fricr
closed : : - ! . . : . closed

eh v er iy b ao d iy eh r w ax d iy



Pronunciation Model: DBN, with
Partially Asynchronous Articulators

 word,: word ID at frame #t

e wdTr,: word transition?

« ind,": which gesture, from
the canonical word model,
should articulator 1 be
trying to implement?

e async,"l: how asynchronous
are articulators 1 and j?

 U/: canonical setting of
articulator #i

o S surface setting of
articulator #i




2. Experiments that have been
used In rescoring

. SVM training: Switchboard vs. NTIMIT
Acoustic features: MFCC vs. rate-scale
Training the pronunciation model

Event-based smoothing with and without
pronunciation model

E. WER Reductions so far: summary
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SVM Training: Switchboard vs. NTIMIT,
Linear vs. RBF

e NTIMIT:

— Read speech = reasonably careful articulations
— Telephone-band, with electronic line noise
— Transcription: phonemic + a few allophones

o Switchboard:
— Conversational speech = very sloppy articulations
— Telephone-band, electronic and acoustic noise

— Transcription: reduced to TIMIT-equivalent for this
experiment, but richer transcription available



SVM Training: Accuracy, per frame, in

percent
Train NTIMIT NTIMIT&SWB NTIMIT Switchboard
Test NTIMIT NTIMIT&SWB | Switchboard | Switchboard
Kernel Linear | RBF | Linear | RBF Linear | RBF | Linear | RBF
speech onset 95.1 | 96.2 | 86.9 89.9 714 | 622 | 816 | 81.6
speech offset 79.6 | 885 | 76.3 86.4 65.3 | 786 | 68.4 | 83.7
consonant onset 945 | 955 | 914 93.5 703 | 72.7 | 958 | 97.7
consonant offset 91.7 | 93.7 | 94.3 96.8 80.3 | 862 | 928 | 96.8
continuant onset 894 | 941 | 87.3 95.0 69.1 | 81.9 | 86.2 | 92.0
continuant offset | 90.8 | 949 | 90.4 94.6 69.3 | 688 | 89.6 | 94.3
sonorant onset 956 | 972 | 97.8 96.7 85.2 | 865 | 963 | 96.3
sonorant offset 95.3 | 964 | 94.0 97.4 756 | 752 | 952 | 96.4
syllabic onset 90.7 | 95.2 | 914 95.5 69.5 | 789 | 879 | 92.6
syllabic offset 90.1 | 889 | 87.1 92.9 544 | 60.8 | 88.2 | 89.7




Acoustic Feature Selection: MFCCs,

Formants, Rate-Scale

1. Accuracy per Frame, Stop Releases only, NTIMIT

MFCCs+Shape MFCCs+Formants
Kernel Linear RBF Linear RBF
+/- lips 78.3 90.7 92.7 95.0
+/- blade 73.4 87.1 79.6 85.1
+/- body 73.0 85.2 85.7 87.2

2. Word Error Rate: Lattice Rescoring, RT03-devel, One Talker

(WARNING: this talker Is atypical.)

Baseline: 15.0% (113/755)

Rescoring, place based on:

MFCCs + Formant-based params: 14.6% (110/755)
Rate-Scale + Formant-based params: 14.3% (108/755)




Event-Based Smoothing of SVM outputs
with and without pronunciation model

1. No event-based smoothing
e  Manner-class recognition results: very bad (many insertions)
e  Lattice rescoring results: not computed

2. Event-based smoothing with no pronunciation model (no DBN)
e Computational complexity: 30 seconds/lattice, 24 hours/RT03

3. Event-based smoothing followed by pronunciation model (DBN):
e Computational complexity: 40 mins/lattice, 2000 hours/RT03



raining the Pronunciation Model

* Trainable Parameters:
- p(indiind ;)
e p(U'|ind',word,)
* p(async,"i=d)
* p(S'|UY)

e Experiment:
e Train p(async) using
manual transcriptions of
Switchboard data

(sD s3)  Test in rescoring pass,

RTO3, with SVM outputs




WER Results so far

WER - WER - 27 |Improved |Unchanged
1 talker talkers Talkers Talkers
Baseline 15.0% 20.3% - -
Rescored 14.6 - - -
Rate-scale+ 14.3 - - -
Formant-based
DBN Trained 13.9 20.4% 6/27 12/27
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. Ongoing Experiments: Acoustic

Modeling

. Acoustic feature vector size

Optimal regularization parameter for SVMs
Function words

Detection of phrasal stress



Acoustic Feature Vector Size:
Accuracy/Frame, linear SVM, trained

w/3000 tokens

Observation Vector 539 2000 10000
Dimension mfcc+formants | ...+shape+APs | ...+rate-scale
speech onset 86.9 93.0 77.6
speech offset 76.3 95.3 79.4
consonant onset 914 89.7 86.3
consonant offset 94.3 81.1 78.8
continuant onset 87.3 84.7 73.9
continuant offset 90.4 91.5 82.3
sonorant onset 97.8 83.8 81.1
sonorant offset 94.0 92.4 87.2
syllabic onset 91.4 85.2 73.8
syllabic offset 87.1 88.0 76.8




Optimal Regularization Parameter for the
SVM

Errors vs. Lambdas, RBF SVM

[efed + slaleipale ol
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SVM minimizes
Train_Error+I*Generality

If you trust your training
data, choose a small |

Should you trust your

training data? Answers:

1. OLD METHOD:
Exhaustive testing of all
possible Is

2. NEW METHOD (Hastie
et al.) simultaneously
computes SVMs for all
possible Is



Analysis and Modeling of Function Words

e Function words account for most substitution errors In
the SRI lattices:
— It—that,99 (1.78%); the—a,68 (1.22%); a—the,68 (1.03%)
— and—in,64 (1.15%); that—the,40 (0.72%); the—that,35 (0.63%)
e Possible Solutions

— Model multiwords in the DBN, e.g. “IN_THE ithndhax” -
DONE

— Define SVM context to depend on function vs. content word —
NOT YET

— Better models of “partially deleted” phonemes, e.g. /dh/ (that
< it, the < a), Inl (you know — yow)



Better Models of “Partially
Deleted” Phonemes

« Example: /dh/ is frequently a nasal (in the) or a stop (at the), but always
Implemented with a dental place of articulation (manuel, 1994)

— Conclusion: existence of “the” is cued by dental place of articulation of any
consonant release

— DBN could model manner change if given training data, but NTIMIT notation
quantizes all /dh/ as either /dh/, /d/, or /n/

— Possible solution: train [+dental] as a feature of all [+blade] consonants,
regardless of manner — training tokens are all “fricative,” but test tokens may
be nasal or stop. DBN recognizes that manner of /dh/ is variable...

o Example: /n/ is deleted in “you know” or “I know,” but leaves behind a
nasalized vowel. Possible solution: recognize nasality of the vowel; DBN
can attribute nasality of the vowel to a deleted nasal consonant.
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Detection of Phrasal Stress

The probability of a deletion error is MUCH higher in unstressed syllables

SVM detectors for phrasal stress (based on ICSI transcribed data) are
currently under development

Phrasal stress distinguishes words: some syllable nuclei are allowed to carry
phrasal stress, some are not

Phrasal stress conditions other pronunciation probabilities: it can identify
words subject to increased probability of phoneme deletion.

Spectrogram '
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Phonetic/Accent Labels

Word Transcript



4. Ongoing Experiments:
Pronunciation Modeling

 Complexity Issues:
— Improved triangulation of the DBN
—  Which reductions should we model?

e Discriminative Pronunciation Modeling:

— Adistinctive feature lexicon, with features added
discriminatively to improve system performance

— Discriminative optimization of pronunciation string
probabilities using maximum entropy, conditional random
fields

— Discriminative models of landmark insertion, substitution,
and deletion: a factored N-gram language model



Improved Triangulation of the DBN

The DBN Inference Algorithm: p(word,| observations) is
computed using the following algorithm:
1. Triangulate so that cligues can be eliminated one at a time

2. Marginalize over the cligues, one at a time, starting with the cliques farthest
from word,, until the only remaining variable is word,

Complexity of inference o, |S|NumVarPerClique
Different triangulations result in different NumVarPerClique
Finding the perfect triangulation is NP-hard

Finding an OK triangulation:

1.  Start with initial guess about where the borders are between groups of
variables

2.  Specify the flexibility of each border
3.  Search within specified limits

Status: job iIs running (currently on day 7)



Which Reductions Should we Model?

Virtually anything can reduce in natural speech due to stylistic,
lexical, and phonological factors (Raymond et al. 2003). The
problem: Every degree of freedom in p(S'|U',) increases
complexity of the DBN. Which of the possible reductions are
most important?

Common environments for reduction: (Greenberg et al. 2002;
2003)

— Unstressed syllables

— Syllable codas

Segment types more prone to reduction:

— Coronals: /t/, /d/, In/, Is/
Types of reductions commonly observed:

— Absolute reduction = deletion

— Other reductions: flapping, frication, etc.

Based on these observations, we should model reduction and
deletion of coda coronals (and related effects on preceding vowel
formants), especially in unstressed syllables



Discriminative Pronunciation Modeling

We only need to distinguish between small sets of confusable
words during rescoring, so ... find a model that emphasizes
landmark features relevant for distinguishing between
words, train discriminatively.

1. Lexical representation:
— Select distinctive features that maximally discriminate confusable
words
2. Computing p(pronunciation | word) discriminatively:

= (@) convert each word to a fixed-length landmark-based
representation and use discriminative classifier (maxent)

(b) use a discriminative sequence model (conditional random field)

(c) represent the landmarks as “words” in a language model; apply
discriminative language modeling technigues

—
—



Discriminative Selection of Distinctive

Features
« Adistinctive feature lexicon already exists, based on the Juneja-
Espy feature set.

» Goal: add partially redundant binary features to each phoneme, in
order to increase the likelihood of accurate lexical matches.
— Discriminative selection using MAXENT (next slide)
— Selection based on Switchboard error analysis, e.g. length, energy contour,

......

“Today”

Syllable Manner Place Height Glide \Voicing Length Energy Accent Segment
ON ST Central * — — # # — t
NU VO Central Hi — + # # — ax
ON ST Central * — + # # + d
NU VO Front Mid + + # # + eh
NU VO Front Hi + + # # + ih

“Ready”

Syllable Manner Place Height Glide Voicing Length Energy Accent Segment
ON RH back * + + # # + r
NU VO front Hi - + # # + ax
JU FLAP * * - * # # * dx
NU VO front Hi + + # # — ih
NU VO front Hi + + # # - iy




Discriminative Optimization of Pronunciation
Probabilities Using Maximum Entropy

e Convert word lattices to confusion networks (SRI-style)

e For each confusion set, train maxent model on landmark
representation:

p(y |x)= exp(Zﬂ«.fi(X,y))

Z (X)

 y:word, x: landmark sequence, f(y,x): function indicating
presence/absence/frequency of basic temporal relation
(precedence, overlap) between two landmarks

* Apply model to landmark detector output

 Interpolate resulting probabilities with posterior word
probabilities from confusion network and rescore



Discriminative Optimization of Pronunciation
Probabilities Using Conditional Random
Fields

» Use graph structure similar to that in DBN, with one
primary landmark stream defining state sequence

e Other landmarks are treated as feature functions
e Train using CRFs:

1
> (X)exp(Z;/Mk (Y 90 X 1))

 y: word state sequence, X: landmark sequence, t:
length, k: feature dimensionality

e add scores to lattices or n-best lists and rescore

ply Ix) =



Landmark N-gram Pronunciation Model

WORD 20050 20710

MANNER +-continuant -+continuant:+voice +syllabic -+sonorant:+voice +-sonorant:-voice +syllabic -+sonorant:-voice +-so
norant:-voice -+sonorant:-voice +-continuant -+continuant +syllabic -+sonorant -+sonorant:-voice +syllabic -+continuan

t +-sonorant:+voice +syllabic +-continuant +syllabic +-continuant -+continuant -+continuant -+sonorant:-voice +syllabi

¢ +syllabic

PLACE +lips +lips +front:-high -strident:+anterior +strident:+anterior -front:+high +strident:+anterior +strident:-ant
erior -strident:+anterior +lips +body -front:-high +strident:+anterior -front:+high -nasal:+blade -strident:+anterior

+front:+high -nasal:+blade -front:+high +lips +lips -nasal:+blade +strident:+anterior +front:-high +front:+high

« Main idea: Model sequences of landmarks for words and phones

* Approach: Train word and phone landmark N-gram LMs to generate a
smoothed backoff LM

— For common words, train word landmark LMs

— For context dependent phones, train CDP landmark LMs

— For all monophones, train phone landmark LM'’s

— Score each word in a smoothed manner with word, CDP, and phone LMs



5. Ongoing Experiments: Rescoring
Methods

1. Recognizer-generated N-best sentences vs.
Lattice-generated N-best sentences

2. Maximum-entropy estimation of stream weights



Lattices and N-best Lists

e  Basic Rescoring Method:
word_score = a*AM + b*LM + c*#words+ d*secondpass

e  Estimation of stream weights is correctly normalized for N-
best lists, not lattices

Two methods for generating N-best:
* Run recognizer in N-best mode

e (Generate from lattices

N-best from N-best from Lattices
Recognizer
WER based on 1st- 24.4% 24.1%

pass recognizer
scores




Maximum Entropy Estimation of
Stream Weights

e Conditional exponential model of score
combination estimated by Maximum Entropy

e Set of feature functions:

fl (ObS, hyp) — Iog P am (ObS | hyp)

f,(obs, hyp) =log p,,, (hyp)
f.(obs, hyp) =[#words(hyp)]

f4 (O DS, qyp) — Iog pLANDMARK—PRONUNCIATION—I\/IODEL (Obs | hyp)

log P(hyp | obs) = (Z A. 1. (obs, hyp))] —log Z (obs)

LYu,Waibel ICASSP 2004




Maximum Entropy Estimation of
Stream Weights

Computation of the partition function (normalization
factor)

Z(obs)= > exp(Z/li f (obs,hyp))j

hyp (N —Dbest) [

Tool: MaxEnt program by Zhang Le
—  Optimization by L-BFGS algorithm for continuous variables
Currently, experimenting with various normalizations

of the scores

—  Positive, normalized features, appropriate definition of labels
and proper approximation of the partition function necessary

—  Experiments continuing



Conclusions (so far)

WER reduced for the lattices of one talker

Computational complexity inhibits full-corpus
rescoring experiments

|deas that may help reduce WER:
1. Discriminative pronunciation modeling
2. Discriminative combination of pronunciation models

3. Fine phonetic distinction
« The right acoustic features for the right job

 Detect distinctive features that have been “cut free” from a deleted
segment, e.g., [+dental] of /dh/ in “in the,” or [+nasa|] of /n/ In “you
know.” Pronunciation model should use these “cut free” distincfive
features to cue existence of a deleted phone

4. Teach people to enunciate more clearly
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