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Status Report: Outline
1. Review of the paradigm
2. Experiments that have been used in rescoring

– SVM: training on Switchboard vs. NTIMIT
– Acoustic features: MFCCs vs. rate-scale
– Training the pronunciation model
– Event-based smoothing with, w/o pronunciation model
– Results for one talker in RT03-devel

3. Ongoing experiments: Acoustic modeling
4. Ongoing experiments: Pronunciation modeling
5. Ongoing experiments: Rescoring methods



1. Landmark-Based Speech Recognition
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Acoustic Feature 
Vector: A 

Spectrogram 
Snapshot (plus 

formants and auditory 
features)



Two types of SVMs: landmark detectors 
(p(landmark(t)), landmark classifiers (p(place-

features(t)|landmark(t))

SVM

Sigmoid or 
Histogram

2000-dimensional acoustic feature vector

Discriminant 
yi(t)

Posterior 
probability of 
distinctive 
feature
p(di(t)=1 | yi(t))



Event-Based Dynamic Programming 
smoothing of SVM outputs

• Maximize  Πi p( features(ti) | X(ti) ) p(ti+1-ti | features(ti))
• Forced alignment mode: 

computes p( word | acoustics );  rescores the word lattice
• Manner class recognition mode: 

smooths SVM output;  preprocessor for the DBN



Pronunciation Model: Dynamic 
Bayesian Network, with Partially 

Asynchronous Articulators



Pronunciation Model: DBN, with 
Partially Asynchronous Articulators

• wordt: word ID at frame #t
• wdTrt: word transition?
• indt

i: which gesture, from 
the canonical word model,
should articulator i be
trying to implement?

• asynct
i;j: how asynchronous 

are articulators i and j? 
• Ut

i: canonical setting of   
articulator #i

• St
i:  surface setting of
articulator #i



2. Experiments that have been 
used in rescoring

A. SVM training: Switchboard vs. NTIMIT
B. Acoustic features: MFCC vs. rate-scale
C. Training the pronunciation model
D. Event-based smoothing with and without 

pronunciation model
E. WER Reductions so far: summary



SVM Training: Switchboard vs. NTIMIT, 
Linear vs. RBF

• NTIMIT: 
– Read speech = reasonably careful articulations
– Telephone-band, with electronic line noise
– Transcription: phonemic + a few allophones

• Switchboard:
– Conversational speech = very sloppy articulations
– Telephone-band, electronic and acoustic noise
– Transcription: reduced to TIMIT-equivalent for this 

experiment, but richer transcription available



SVM Training: Accuracy, per frame, in 
percent

Train NTIMIT NTIMIT&SWB NTIMIT Switchboard
Test NTIMIT NTIMIT&SWB Switchboard Switchboard
Kernel Linear RBF Linear RBF Linear RBF Linear RBF
speech onset 95.1 96.2 86.9 89.9 71.4 62.2 81.6 81.6

speech offset 79.6 88.5 76.3 86.4 65.3 78.6 68.4 83.7

consonant onset 94.5 95.5 91.4 93.5 70.3 72.7 95.8 97.7
consonant offset 91.7 93.7 94.3 96.8 80.3 86.2 92.8 96.8
continuant onset 89.4 94.1 87.3 95.0 69.1 81.9 86.2 92.0

continuant offset 90.8 94.9 90.4 94.6 69.3 68.8 89.6 94.3

sonorant onset 95.6 97.2 97.8 96.7 85.2 86.5 96.3 96.3

sonorant offset 95.3 96.4 94.0 97.4 75.6 75.2 95.2 96.4

syllabic onset 90.7 95.2 91.4 95.5 69.5 78.9 87.9 92.6

syllabic offset 90.1 88.9 87.1 92.9 54.4 60.8 88.2 89.7



Acoustic Feature Selection: MFCCs, 
Formants, Rate-Scale

1. Accuracy per Frame, Stop Releases only, NTIMIT

2. Word Error Rate: Lattice Rescoring, RT03-devel, One Talker
(WARNING: this talker is atypical.)

Baseline:   15.0%  (113/755)
Rescoring, place based on:
MFCCs + Formant-based params: 14.6% (110/755)
Rate-Scale + Formant-based params: 14.3% (108/755)

MFCCs+Shape MFCCs+Formants

Kernel Linear RBF Linear RBF

+/- lips 78.3 90.7 92.7 95.0
+/- blade 73.4 87.1 79.6 85.1

+/- body 73.0 85.2 85.7 87.2



Event-Based Smoothing of SVM outputs 
with and without pronunciation model

1. No event-based smoothing
• Manner-class recognition results: very bad (many insertions)
• Lattice rescoring results: not computed 

2. Event-based smoothing with no pronunciation model (no DBN)
• Computational complexity: 30 seconds/lattice, 24 hours/RT03 

3. Event-based smoothing followed by pronunciation model (DBN):
• Computational complexity:  40 mins/lattice, 2000 hours/RT03



Training the Pronunciation Model
• Trainable Parameters:

• p(indi
t|indi

t-1)
• p(Ui

t|indi
t,wordt)

• p(asynct
i,j=d)

• p(Si
t|Ui

t)

• Experiment:
• Train p(async) using 
manual transcriptions of 
Switchboard data
• Test in rescoring pass, 
RT03, with SVM outputs



WER Results so far

WER –
1 talker

WER – 27 
talkers

Improved 
Talkers

Unchanged 
Talkers

Baseline 15.0% 20.3% - -

Rescored 14.6 - - -

Rate-scale+ 
Formant-based

14.3 - - -

DBN Trained 13.9 20.4% 6/27 12/27



3. Ongoing Experiments: Acoustic 
Modeling

A. Acoustic feature vector size
B. Optimal regularization parameter for SVMs
C. Function words
D. Detection of phrasal stress



Acoustic Feature Vector Size: 
Accuracy/Frame, linear SVM, trained 

w/3000 tokens
Observation Vector 
Dimension

539
mfcc+formants

2000
…+shape+APs

10000
…+rate-scale

speech onset 86.9 93.0 77.6
speech offset 76.3 95.3 79.4
consonant onset 91.4 89.7 86.3
consonant offset 94.3 81.1 78.8
continuant onset 87.3 84.7 73.9
continuant offset 90.4 91.5 82.3
sonorant onset 97.8 83.8 81.1
sonorant offset 94.0 92.4 87.2
syllabic onset 91.4 85.2 73.8
syllabic offset 87.1 88.0 76.8



Optimal Regularization Parameter for the 
SVM

• SVM minimizes 
Train_Error+l*Generality

• If you trust your training 
data, choose a small l

• Should you trust your 
training data?  Answers:
1. OLD METHOD: 

Exhaustive testing of all 
possible ls

2. NEW METHOD (Hastie 
et al.) simultaneously 
computes SVMs for all 
possible ls



Analysis and Modeling of Function Words

• Function words account for most substitution errors in 
the SRI lattices:
– it→that,99 (1.78%); the→a,68 (1.22%); a→the,68 (1.03%)
– and→in,64 (1.15%); that→the,40 (0.72%); the→that,35 (0.63%)

• Possible Solutions
– Model multiwords in the DBN, e.g. “IN_THE  ih n dh ax”   -

DONE
– Define SVM context to depend on function vs. content word –

NOT YET
– Better models of “partially deleted” phonemes, e.g. /dh/   (that 

↔ it, the ↔ a),  /n/ (you know → yỡw)



Better Models of “Partially 
Deleted” Phonemes

• Example: /dh/ is frequently a nasal (in the) or a stop (at the), but always 
implemented with a dental place of articulation (Manuel, 1994)
– Conclusion: existence of “the” is cued by dental place of articulation of any 

consonant release
– DBN could model manner change if given training data, but NTIMIT notation 

quantizes all /dh/ as either /dh/, /d/, or /n/
– Possible solution: train [+dental] as a feature of all [+blade] consonants, 

regardless of manner – training tokens are all “fricative,” but test tokens may 
be nasal or stop.  DBN recognizes that manner of /dh/ is variable…

• Example: /n/ is deleted in “you know” or “I know,” but leaves behind a 
nasalized vowel.  Possible solution: recognize nasality of the vowel; DBN 
can attribute nasality of the vowel to a deleted nasal consonant.



Detection of Phrasal Stress
The probability of a deletion error is MUCH higher in unstressed syllables
SVM detectors for phrasal stress (based on ICSI transcribed data) are 

currently under development
Phrasal stress distinguishes words: some syllable nuclei are allowed to carry 

phrasal stress, some are not
Phrasal stress conditions other pronunciation probabilities:  it can identify 

words subject to increased probability of phoneme deletion.



4. Ongoing Experiments: 
Pronunciation Modeling

• Complexity Issues:
– Improved triangulation of the DBN
– Which reductions should we model?

• Discriminative Pronunciation Modeling:
– A distinctive feature lexicon, with features added 

discriminatively to improve system performance
– Discriminative optimization of pronunciation string 

probabilities using maximum entropy, conditional random 
fields

– Discriminative models of landmark insertion, substitution, 
and deletion: a factored N-gram language model



Improved Triangulation of the DBN
• The DBN Inference Algorithm:   p(wordt | observations) is 

computed using the following algorithm:
1. Triangulate so that cliques can be eliminated one at a time
2. Marginalize over the cliques, one at a time, starting with the cliques farthest 

from wordt, until the only remaining variable is wordt

• Complexity of inference  α |S|NumVarPerClique

• Different triangulations result in different NumVarPerClique
• Finding the perfect triangulation is NP-hard
• Finding an OK triangulation:

1. Start with initial guess about where the borders are between groups of 
variables

2. Specify the flexibility of each border
3. Search within specified limits

• Status: job is running (currently on day 7)



Which Reductions Should we Model?
• Virtually anything can reduce in natural speech due to stylistic, 

lexical, and phonological factors (Raymond et al. 2003). The 
problem: Every degree of freedom in p(Si

t|Ui
t) increases 

complexity of the DBN.  Which of the possible reductions are 
most important?

• Common environments for reduction: (Greenberg et al. 2002; 
2003)
– Unstressed syllables
– Syllable codas

• Segment types more prone to reduction: 
– Coronals: /t/, /d/, /n/, /s/

• Types of reductions commonly observed:
– Absolute reduction = deletion 
– Other reductions:  flapping, frication, etc.

• Based on these observations, we should model reduction and 
deletion of coda coronals (and related effects on preceding vowel 
formants), especially in unstressed syllables



Discriminative Pronunciation Modeling
We only need to distinguish between small sets of confusable 

words during rescoring, so … find a model that emphasizes 
landmark features relevant for distinguishing between 
words, train discriminatively.

1. Lexical representation:
⇒ Select distinctive features that maximally discriminate confusable 

words
2. Computing p(pronunciation | word) discriminatively: 

⇒ (a) convert each word to a fixed-length landmark-based 
representation and use discriminative classifier (maxent) 

⇒ (b) use a discriminative sequence model (conditional random field)
⇒ (c) represent the landmarks as “words” in a language model; apply 

discriminative language modeling techniques



Discriminative Selection of Distinctive 
Features

• A distinctive feature lexicon already exists, based on the Juneja-
Espy feature set.

• Goal: add partially redundant binary features to each phoneme, in 
order to increase the likelihood of accurate lexical matches.
– Discriminative selection using MAXENT (next slide)
– Selection based on Switchboard error analysis, e.g. length, energy contour, 

accent “Today” 
Syllable Manner Place Height Glide Voicing Length Energy Accent Segment 

ON ST Central * – – # # – t 
NU VO Central Hi – + # # – ax 
ON ST Central * – + # # + d 
NU VO    Front Mid + + # # + eh 
NU VO Front Hi + + # # + ih 

 



• Convert word lattices to confusion networks (SRI-style)
• For each confusion set, train maxent model on landmark 

representation: 

• y: word, x: landmark sequence, f(y,x): function indicating 
presence/absence/frequency of basic temporal relation 
(precedence, overlap) between two landmarks  

• Apply model to landmark detector output  
• Interpolate resulting probabilities with posterior word 

probabilities from confusion network and rescore
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Discriminative Optimization of Pronunciation 
Probabilities Using Maximum Entropy



• Use graph structure similar to that in DBN, with one 
primary landmark stream defining state sequence

• Other landmarks are treated as feature functions
• Train using CRFs: 

• y: word state sequence, x: landmark sequence, t: 
length, k: feature dimensionality

• add scores to lattices or n-best lists and rescore
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Discriminative Optimization of Pronunciation 
Probabilities Using Conditional Random 

Fields



Landmark N-gram Pronunciation Model

• Main idea: Model sequences of landmarks for words and phones
• Approach: Train word and phone landmark N-gram LMs to generate a 

smoothed backoff LM
– For common words, train word landmark LMs
– For context dependent phones, train CDP landmark LMs
– For all monophones, train phone landmark LM’s
– Score each word in a smoothed manner with word, CDP, and phone LMs

WORD completely 20050 20710
MANNER +-continuant -+continuant:+voice +syllabic -+sonorant:+voice +-sonorant:-voice +syllabic -+sonorant:-voice +-so

norant:-voice -+sonorant:-voice +-continuant -+continuant +syllabic -+sonorant -+sonorant:-voice +syllabic -+continuan

t +-sonorant:+voice +syllabic +-continuant +syllabic +-continuant -+continuant -+continuant -+sonorant:-voice +syllabi

c +syllabic 

PLACE +lips +lips +front:-high -strident:+anterior +strident:+anterior -front:+high +strident:+anterior +strident:-ant

erior -strident:+anterior +lips +body -front:-high  +strident:+anterior -front:+high -nasal:+blade -strident:+anterior

+front:+high -nasal:+blade -front:+high +lips +lips -nasal:+blade +strident:+anterior +front:-high +front:+high 



5. Ongoing Experiments: Rescoring 
Methods

1. Recognizer-generated N-best sentences vs. 
Lattice-generated N-best sentences

2. Maximum-entropy estimation of stream weights



Lattices and N-best Lists
• Basic Rescoring Method:

word_score = a*AM + b*LM + c*#words+ d*secondpass
• Estimation of stream weights is correctly normalized for N-

best lists, not lattices
• Two methods for generating N-best:

• Run recognizer in N-best mode
• Generate from lattices

N-best from 
Recognizer

N-best from Lattices

WER based on 1st-
pass recognizer 
scores

24.4% 24.1%



Maximum Entropy Estimation of 
Stream Weights

• Conditional exponential model of score 
combination estimated by Maximum Entropy1

• Set of feature functions:

)(log)),()|(log obsZhypobsfobshypP
i

ii −







= ∑λ

)|(log),(
)]([#),(

)(log),(
)|(log),(

4

3

2

1

hypobsphypobsf
hypwordshypobsf

hypphypobsf
hypobsphypobsf

MODELIONPRONUNCIATLANDMARK

LM

AM

−−=
=
=
=

1Yu,Waibel ICASSP 2004



Maximum Entropy Estimation of 
Stream Weights

• Computation of the partition function (normalization 
factor)

• Tool: MaxEnt program by Zhang Le
– Optimization by L-BFGS algorithm for continuous variables

• Currently, experimenting with various normalizations 
of the scores 

– Positive, normalized features, appropriate definition of labels 
and proper approximation of the partition function necessary

– Experiments continuing
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Conclusions (so far)
• WER reduced for the lattices of one talker
• Computational complexity inhibits full-corpus 

rescoring experiments
• Ideas that may help reduce WER:

1. Discriminative pronunciation modeling
2. Discriminative combination of pronunciation models
3. Fine phonetic distinction

• The right acoustic features for the right job
• Detect distinctive features that have been “cut free” from a deleted 

segment, e.g., [+dental] of /dh/ in “in the,” or [+nasal] of /n/ in “you 
know.”  Pronunciation model should use these “cut free” distinctive 
features to cue existence of a deleted phone

4. Teach people to enunciate more clearly
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