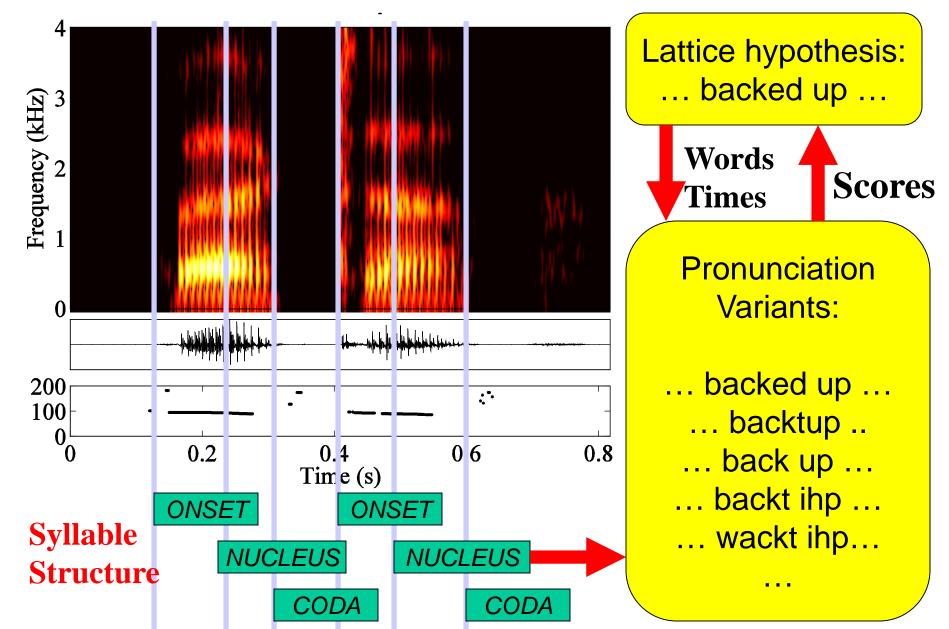
Landmark-Based Speech Recognition

Mark Hasegawa-Johnson Jim Baker **Steven Greenberg Katrin Kirchhoff** Jen Muller **Kemal Sonmez** Ken Chen Amit Juneja **Karen Livescu** Srividya Mohan **Sarah Borys Tarun Pruthi Emily Coogan Tianyu Wang**

Goals of the Workshop

- "Acoustic Modeling:"
 - Manner change landmarks: 15 binary SVMS
 - Place of articulation: currently 33 binary SVMs, dependent on manner (t-50ms,...,t+50ms)
- "Lexical Modeling:"
 - Dictionary implemented using current version of GMTK
 - "Streams" in the dictionary: settings of lips, tongue blade, tongue body, velum, larynx
 - Dependencies in GMTK learn the synchronization among the five articulators.
- Evaluation: Lattice rescoring (EARS RT03)
 - Improve 1-Best WER

Landmark-Based Speech Recognition



Outline

- Scientific Goals of the Workshop
- Resources
 - Speech data
 - Acoustic features
 - Distinctive feature probabilities: trained SVMs
 - Pronunciation models
 - Lattice scoring tools
 - Lattices
- Preliminary Experiments
- Planned Experiments

Scientific Goals of the Workshop

- Acoustic
 - Learn precise and generalizable models of the acoustic boundary associated with each distinctive feature,
 - ... in an acoustic feature space including representative samples of spectral, phonetic, and auditory features,
 - ... with regularized learners that trade off training corpus error against estimated generalization error in a very-high-dimensional model space
- Phonological
 - Represent a large number of pronunciation variants, in a controlled fashion, by factoring the pronunciation model into distinct articulatory gestures,
 - ... by integrating pseudo-probabilistic soft evidence into a Bayesian network
- Technological
 - A lattice-rescoring pass that reduces WER

Data Resources: Speech Data

	Size	Phonetic Transcr.	Word Lattices
NTIMIT	14hrs	manual	_
WS96&97	3.5hrs	Manual	_
SWB1 WS04 subset	12hrs	auto-SRI	BBN
Eval01	10hrs	_	BBN & SRI
RT03 Dev	бhrs	_	SRI
RT03 Eval	бhrs	-	SRI

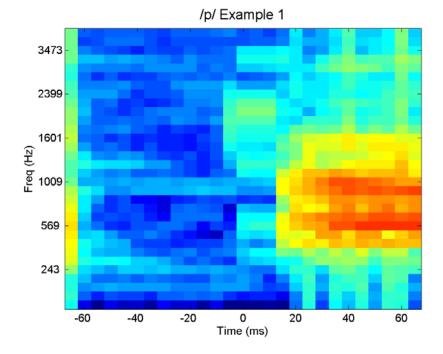
Data Resources: Acoustic Features

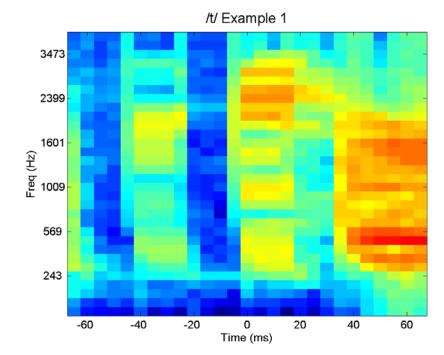
- MFCCs
 - 5ms skip, 25ms window (standard ASR features)
 - 1ms skip, 4ms window (equivalent to calculation of energy, spectral tilt, and spectral compactness once/millisecond)
- Formant frequencies, once/5ms
 - ESPS LPC-based formant frequencies and bandwidths
 - Zheng MUSIC-based formant frequencies, amplitudes, and bandwidths
- Espy-Wilson Acoustic Parameters
 - sub-band aperiodicity, sonorancy, other targeted measures
- Seneff Auditory Model: Mean rate and synchrony
- Shamma rate-place-sweep auditory parameters

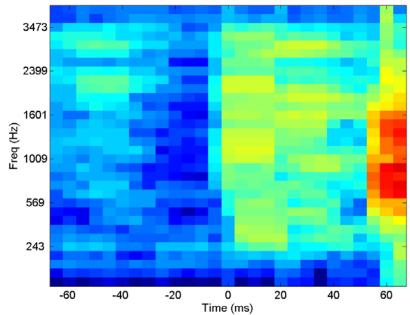
Background: a Distinctive Feature definition

- Distinctive feature = a binary partition of the phonemes
- Landmark = Change in the value of an "Articulator-Free Feature" (a.k.a. manner feature)
 - +speech to -speech, -speech to +speech
 - consonantal, continuant, sonorant, syllabic
- "Articulator-Bound Features" (place and voicing): SVMs are only trained at landmarks
 - Primary articulator: lips, tongue blade, or tongue body
 - Features of primary articulator: anterior, strident
 - Features of secondary articulator: voiced

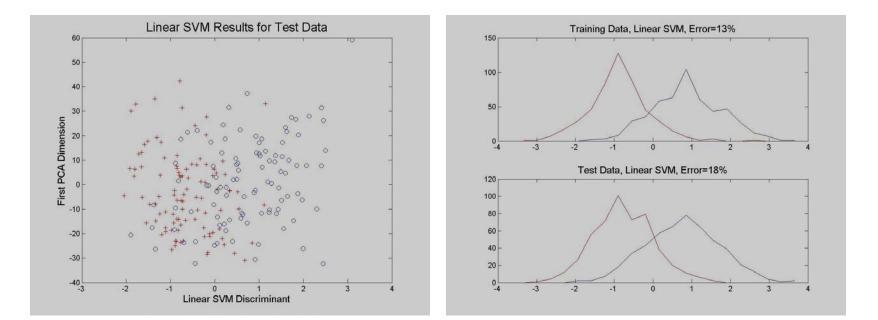
Place of Articulation: cued by the WHOLE PATTERN of spectral change over time within 150ms of a landmark



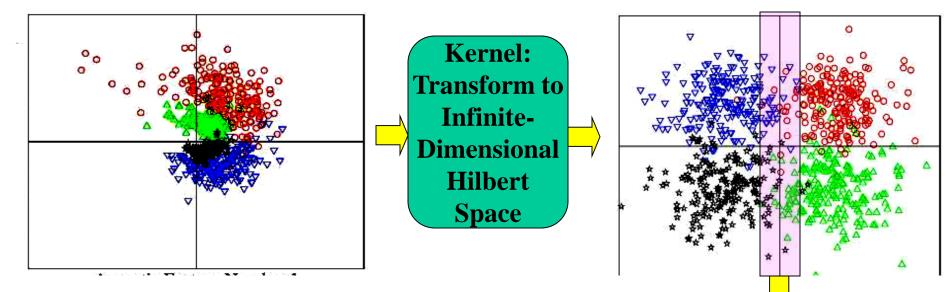




Software Resources: SVMs trained for binary distinctive feature classification



Software Resources: Posterior probability estimator based on SVM discriminant



SVM Extracts a

Discriminant Dimension

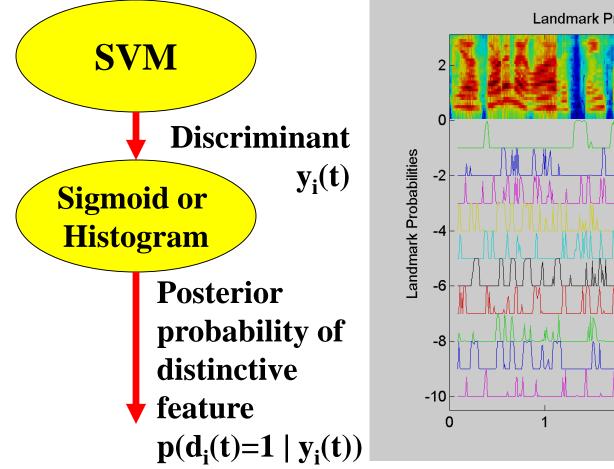
(SVM Discriminant Dimension = argmin(error(margin)+1/width(margin))

(Niyogi & Burges, 2002: Posterior PDF = Sigmoid Model in Discriminant Dimension)

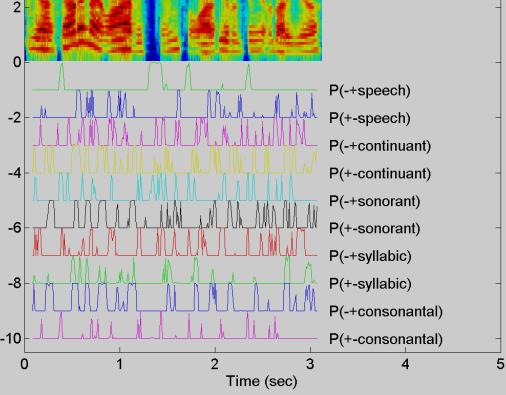
An Equivalent Model: Likelihoods = Gaussian in Discriminant Dimension

Data Resources: 33-track Distinctive Feature Probs, NTIMIT, ICSI, 12hr, RT03

2000-dimensional acoustic feature vector



Landmark Probabilities, sw2830A-ws96-i-0127



Lexical Resources: Landmark-Based Lexicon

- Merger of English Switchboard and Callhome dictionaries
- Converted to landmarks using Hasegawa-Johnson's perl transcription tools Landmarks in blue, Place and voicing features in green.

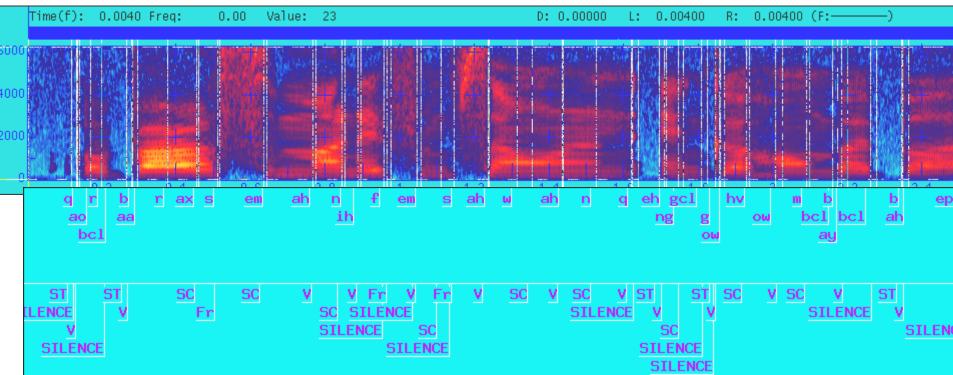
+-continuant +- sonorant +velar +voiced G closure -+continuant -+sonorant +velar +voiced G release +syllabic -low -high +back +round +tense OW AGO(0.294118) +syllabic +reduced -back IX	-
+syllabic –low –high +back +round +tense OW	e
AGO(0.294118) +syllabic +reduced –back IX	
AGO(0.294118) +syllabic +reduced –back IX	
-+ continuant -+ sonorant +velar +voiced G closure	e
-+continuant -+sonorant +velar +voiced G release	e
+syllabic –low –high +back +round +tense OW	
	e

Software Resources: DP smoothing of SVM outputs

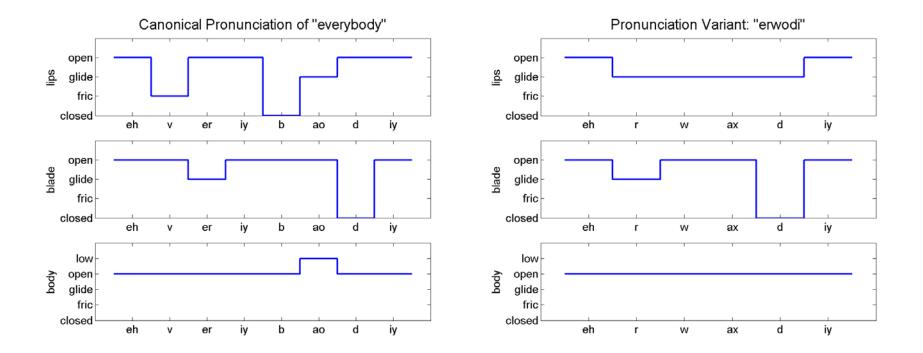
- Maximize $\Pi_i p(\text{features}(t_i) | X(t_i)) p(t_{i+1}-t_i | \text{features}(t_i))$
- Forced alignment mode:

computes p(word | acoustics); rescores the word lattice

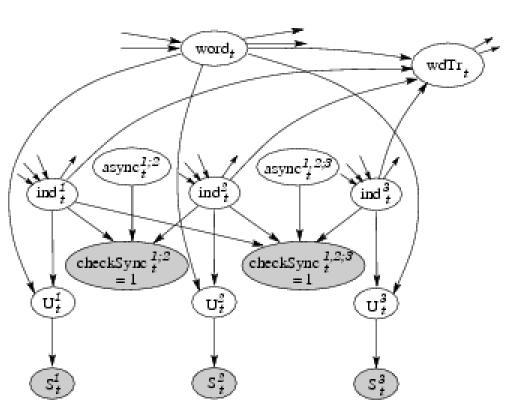
 Manner class recognition mode: smooths SVM output; preprocessor for the DBN



Software Resources: Dynamic Bayesian Network model of pronunciation variability



DBN model: a bit more detail



- word_t: word ID at frame #t
- wdTr_t: word transition?
- ind_tⁱ: which gesture, from the canonical word model, should articulator i be trying to implement?
- async_t^{i;j}: how asynchronous are articulators i and j?
- U_tⁱ: canonical setting of articulator #i
- S_tⁱ: surface setting of articulator #i

Lattice Rescoring Resources: SRILM, finite state toolkit, GMTK

- Lattice annotation: each word carries multiple scores
 - Original language model
 - Original acoustic model
 - DP-smoothed SVM scores
 - DBN scores
- Integration: weighted sum of log probabilities?
 - N-best lists vs. lattices
 - Stream-weight optimization: amoeba search?
 - How many different scores? Bayesian justification?

Lattices

- RT03: lattices from SRI
 - 72 conversations (12 hours), Fisher & Switchboard
 - Development test and Evaluation subcorpora
 - Devel set: WER=24.1%
- EVAL01: lattices from BBN
 - 60 conversations (10 hours), Switchboard
 - Evaluation corpus only
 - WER=23.5%

Lattices: Analysis

- RT03 development test lattices:
 - SUB=13.4%, INS=2.2%, DEL=8.5%
 - Function words account for most substitutions:
 - it \rightarrow that,99 (1.78%); the \rightarrow a,68 (1.22%); a \rightarrow the,68 (1.03%)
 - and \rightarrow in,64 (1.15%); that \rightarrow the,40 (0.72%); the \rightarrow that,35 (0.63%)
 - Percent of word substitutions involving the following errors:

• Insertions of Onset 23%,	Vowel 15%,	Coda 13%
• Deletions of Onset 29%,	Vowel 17%,	Coda 3%
• Place Error of Onset 9.6%,	Vowel 15.8%,	Coda 9.6%

• Manner Error of Onset 20.1%,

Coda 20.2%

Lattice Rescoring Experiment, Week 0:

- Unconstrained DP-smoothing of SVM outputs,
- ... integrated using a DBN that allows asynchrony of constrictions, but not reduction,
- ... used to compute a new "SVM-DBN" score for each word in the lattice,
- ... added to the existing language model and acoustic model scores (with stream weight of 1.0 for the new score)

"Week 0" Lattice Rescoring Results & Examples

- Reference transcription:
- yeah I bet that restaurant was but what how did the food taste
- Original lattice, WER=76%:
- yeah but that is what I was traveling with how the school safe
- SVM-DBN acoustic scores replace original acoustic scores, WER=69%: yeah yeah but that restrooms problems with how the school safe
- Analysis (speculative, with just one lattice...):
 - SVM improves syllable count:
 - "yeah I but" \rightarrow "yeah yeah but" vs. "yeah but"
 - SVM improves recognition of consonants:
 - "restaurant"→"restrooms" vs. "that's what I"
 - SVM currently has NO MODEL of vowels
 - In this case, the net result is a drop in WER

Schedule of Experiments: Current Problem Spots

- Combination of language model, HMM acoustic model, and SVM-DBN acoustic model scores!!!
 - Solving this problem may be enough to get a drop in WER!!!
- Pronunciation variability vs. DBN computational complexity
 - Current model: asynchrony allowed, but not reductions, e.g., stop \rightarrow glide
 - Current computational complexity ~720XRT
 - Extra flexibility (e.g., stop \rightarrow glide reductions) desirable but expensive
- Accuracy of SVMs:
 - Landmark detection error, S+D+I: 20%
 - Place classification error, S: 10-35%
 - Already better than GMM, but still worse than human listeners. Is it already good enough? Can it be improved?

Schedule of Experiments

- July 12 targets:
 - SVMs using all acoustic observations
 - Write scripts to automatically generate word scores and annotate n-best list
 - N-best-list streamweight training
 - Complete rescoring experiment for RT03-development n-best lists
- July 19 targets:
 - Error-analysis-driven retraining of SVMs
 - Error-analysis-driven inclusion of closure-reduction arcs into the DBN
 - Second rescoring experiment
 - Error-analysis driven selection of experiments for weeks 3-4
- August 7 targets:
 - Ensure that all acoustic features and all distinctive feature probabilities exist for RT03/Evaluation
 - Final experiments to pick best novel word scores
- August 10 target: Rescoring pass using RT03/evaluation lattices
- August 16 target: Dissect results: what went right? What went wrong?

Summary

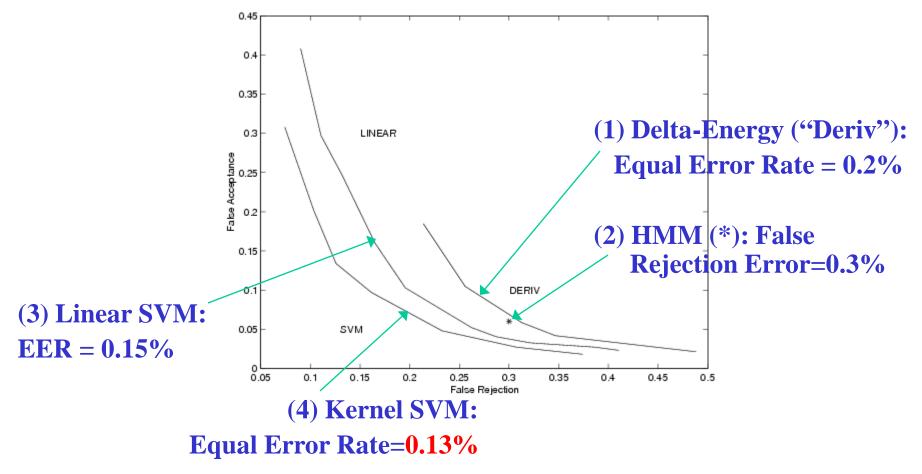
- Acoustic modeling:
 - Target problem: 2000-dimensional observation space
 - Proposed method: regularized learner (SVM) to explicitly control tradeoff between training error & generalization error
 - Resulting constraints:
 - Choice of binary distinctions is important: choose **distinctive features**
 - Choice of time alignment is important: train place SVMs at landmarks
- Lexical modeling:
 - Target problem: increase flexibility of pronunciation model without overgenerating pronunciation variants
 - Proposed method: factor the probability of pronunciation variants into misalignment & reduction probabilities of 5 hidden articulators
 - Resulting constraints:
 - Choice of factors is important: choose articulatory factors
 - Integration of SVMs into Bayesian model is an interesting problem
- Lattice rescoring:
 - Target problem: integrate word-level side information into a lattice
 - Proposed method: amoeba search optimization of stream weights
 - **Potential problems**: amoeba search may only work for **N-best lists**

Extra Slides

Stop Detection using Support Vector Machines

False Acceptance vs. False Rejection Errors, TIMIT, per 10ms frame

SVM Landmark Detector: Half the Error of an HMM



Niyogi & Burges, 1999, 2002

Manner Class Recognition Accuracy in TIMIT (errors per phoneme)

	13 Mixture HMM (22716 parameters) (Borys & Hasegawa-Johnson)	Landmark SVM (160 parameters) (Juneja & Espy-Wilson)
speech vs. silence	80.2%	94.1
+vocalic vs. –vocalic	77.8	78.9
+sonorant vs. –sonorant	77.8	93.4
+continuant vs. –continuant	77.0	93.7
Vowel vs. Glide vs. Nasal vs. Stop vs. Fricative	73.5	79.8

Place Classification Accuracy, RBF SVMs observing MFCCs+formants in 110ms window at consonant release

	TIMIT	NTIMIT	ICSI Switchboard
Lips-stop	95.0%	90.5	83.1
Blade-stop	85.1	83.3	63.7
Body-stop	87.2	88.1	82.1
Lips-fric			89.9
Anterior			87.8
Strident			82.3