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Goals of the Workshop
• “Acoustic Modeling:”

– Manner change landmarks: 15 binary SVMS
– Place of articulation: currently 33 binary SVMs, 

dependent on manner (t-50ms,…,t+50ms)
• “Lexical Modeling:”

– Dictionary implemented using current version of GMTK
– “Streams” in the dictionary: settings of lips, tongue blade, 

tongue body, velum, larynx
– Dependencies in GMTK learn the synchronization among 

the five articulators.
• Evaluation:  Lattice rescoring (EARS RT03)

– Improve 1-Best WER
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Outline
• Scientific Goals of the Workshop
• Resources

– Speech data
– Acoustic features
– Distinctive feature probabilities: trained SVMs
– Pronunciation models
– Lattice scoring tools
– Lattices

• Preliminary Experiments
• Planned Experiments



Scientific Goals of the Workshop
• Acoustic

– Learn precise and generalizable models of the acoustic boundary 
associated with each distinctive feature,

– … in an acoustic feature space including representative samples of 
spectral, phonetic, and auditory features,

– … with regularized learners that trade off training corpus error against 
estimated generalization error in a very-high-dimensional model space

• Phonological
– Represent a large number of pronunciation variants, in a controlled 

fashion, by factoring the pronunciation model into distinct articulatory 
gestures,

– … by integrating pseudo-probabilistic soft evidence into a Bayesian 
network

• Technological
– A lattice-rescoring pass that reduces WER



Data Resources: Speech Data
Size Phonetic 

Transcr.
Word Lattices

NTIMIT 14hrs manual -

WS96&97 3.5hrs Manual -

SWB1 WS04 subset 12hrs auto-SRI BBN

Eval01 10hrs - BBN & SRI

RT03 Dev 6hrs - SRI

RT03 Eval 6hrs - SRI



Data Resources: Acoustic Features
• MFCCs

– 5ms skip, 25ms window (standard ASR features)
– 1ms skip, 4ms window (equivalent to calculation of energy, 

spectral tilt, and spectral compactness once/millisecond)
• Formant frequencies, once/5ms

– ESPS LPC-based formant frequencies and bandwidths
– Zheng MUSIC-based formant frequencies, amplitudes, and 

bandwidths
• Espy-Wilson Acoustic Parameters

– sub-band aperiodicity, sonorancy, other targeted measures
• Seneff Auditory Model: Mean rate and synchrony
• Shamma rate-place-sweep auditory parameters



Background: 
a Distinctive Feature definition

• Distinctive feature = a binary partition of the phonemes
• Landmark = Change in the value of an “Articulator-Free 

Feature” (a.k.a. manner feature)
– +speech to –speech, –speech to +speech
– consonantal, continuant, sonorant, syllabic

• “Articulator-Bound Features” (place and voicing): 
SVMs are only trained at landmarks 
– Primary articulator: lips, tongue blade, or tongue body
– Features of primary articulator: anterior, strident
– Features of secondary articulator: voiced



Place of Articulation:
cued by

the WHOLE PATTERN 
of spectral change over 
time within 150ms of a 

landmark



Software Resources: SVMs trained for 
binary distinctive feature classification



Kernel:
Transform to

Infinite-
Dimensional

Hilbert
Space

(Niyogi & Burges, 2002: Posterior PDF = 
Sigmoid Model in Discriminant Dimension)

An Equivalent Model: Likelihoods =
Gaussian in Discriminant Dimension

Software Resources: Posterior probability 
estimator based on SVM discriminant

SVM Extracts a 
Discriminant Dimension

(SVM Discriminant Dimension =
argmin(error(margin)+1/width(margin))



Data Resources: 33-track Distinctive 
Feature Probs, NTIMIT, ICSI, 12hr, RT03

SVM

Sigmoid or 
Histogram

2000-dimensional acoustic feature vector

Discriminant 
yi(t)

Posterior 
probability of 
distinctive 
feature
p(di(t)=1 | yi(t))



Lexical Resources: Landmark-Based 
Lexicon

• Merger of English Switchboard and Callhome dictionaries
• Converted to landmarks using Hasegawa-Johnson’s perl transcription tools

Landmarks in blue, Place and voicing features in green.

AGO(0.441765)  +syllabic +reduced +back                                AX
+–continuant +– sonorant +velar +voiced      G closure
–+continuant –+sonorant +velar +voiced       G release
+syllabic –low –high +back +round +tense    OW

AGO(0.294118)  +syllabic +reduced –back                                 IX
–+ continuant –+sonorant +velar +voiced G closure
–+continuant –+sonorant +velar +voiced G release
+syllabic –low –high +back +round +tense    OW



Software Resources: DP smoothing of 
SVM outputs

• Maximize  Πi p( features(ti) | X(ti) ) p(ti+1-ti | features(ti))
• Forced alignment mode: 

computes p( word | acoustics );  rescores the word lattice
• Manner class recognition mode: 

smooths SVM output;  preprocessor for the DBN



Software Resources: 
Dynamic Bayesian Network model 

of pronunciation variability



DBN model: a bit more detail

• wordt: word ID at frame #t
• wdTrt: word transition?
• indt

i: which gesture, from 
the canonical word model,
should articulator i be
trying to implement?

• asynct
i;j: how asynchronous 

are articulators i and j? 
• Ut

i: canonical setting of   
articulator #i

• St
i:  surface setting of
articulator #i



Lattice Rescoring Resources: 
SRILM, finite state toolkit, GMTK

• Lattice annotation: each word carries multiple 
scores
– Original language model
– Original acoustic model
– DP-smoothed SVM scores
– DBN scores

• Integration: weighted sum of log probabilities?
– N-best lists vs. lattices
– Stream-weight optimization: amoeba search?
– How many different scores?  Bayesian justification?



Lattices
• RT03: lattices from SRI

– 72 conversations (12 hours), Fisher & Switchboard
– Development test and Evaluation subcorpora
– Devel set: WER=24.1%

• EVAL01: lattices from BBN
– 60 conversations (10 hours), Switchboard
– Evaluation corpus only
– WER=23.5%



Lattices: Analysis
• RT03 development test lattices:

– SUB=13.4%, INS=2.2%, DEL=8.5% 
– Function words account for most substitutions:

• it→that,99 (1.78%); the→a,68 (1.22%); a→the,68 (1.03%)
• and→in,64 (1.15%); that→the,40 (0.72%); the→that,35 (0.63%)

– Percent of word substitutions involving the following errors:
• Insertions of Onset 23%, Vowel 15%, Coda 13%
• Deletions of Onset 29%, Vowel 17%, Coda 3%
• Place Error of Onset 9.6%, Vowel 15.8%, Coda 9.6%
• Manner Error of Onset 20.1%, Coda 20.2%



Lattice Rescoring Experiment, 
Week 0:

• Unconstrained DP-smoothing of SVM outputs,
• … integrated using a DBN that allows 

asynchrony of constrictions, but not reduction,
• … used to compute a new “SVM-DBN” score for 

each word in the lattice, 
• … added to the existing language model and 

acoustic model scores (with stream weight of 1.0 
for the new score)



“Week 0” Lattice Rescoring Results 
& Examples

• Reference transcription:
yeah I bet that restaurant was but what how did the food taste
• Original lattice, WER=76%:
yeah but that that’s what I was traveling with how the school safe
• SVM-DBN acoustic scores replace original acoustic scores, WER=69%:
yeah yeah but that restrooms problems with how the school safe
• Analysis (speculative, with just one lattice…):

– SVM improves syllable count:
• “yeah I but” → “yeah yeah but”  vs. “yeah but”

– SVM improves recognition of consonants:
• “restaurant”→“restrooms” vs. “that’s what I”

– SVM currently has NO MODEL of vowels
– In this case, the net result is a drop in WER



Schedule of Experiments: Current 
Problem Spots

• Combination of language model, HMM acoustic model, and 
SVM-DBN acoustic model scores!!!
– Solving this problem may be enough to get a drop in WER!!!

• Pronunciation variability vs. DBN computational complexity
– Current model: asynchrony allowed, but not reductions, e.g., stop→glide
– Current computational complexity ~720XRT
– Extra flexibility (e.g., stop→glide reductions) desirable but expensive

• Accuracy of SVMs: 
– Landmark detection error, S+D+I: 20%
– Place classification error, S: 10-35%
– Already better than GMM, but still worse than human listeners.  Is it 

already good enough?  Can it be improved? 



Schedule of Experiments
• July 12 targets:

– SVMs using all acoustic observations
– Write scripts to automatically generate word scores and annotate n-best list
– N-best-list streamweight training 
– Complete rescoring experiment for RT03-development n-best lists

• July 19 targets:
– Error-analysis-driven retraining of SVMs
– Error-analysis-driven inclusion of closure-reduction arcs into the DBN
– Second rescoring experiment
– Error-analysis driven selection of experiments for weeks 3-4

• August 7 targets:
– Ensure that all acoustic features and all distinctive feature probabilities exist for 

RT03/Evaluation
– Final experiments to pick best novel word scores

• August 10 target: Rescoring pass using RT03/evaluation lattices
• August 16 target: Dissect results: what went right? What went wrong?



Summary
• Acoustic modeling:

– Target problem: 2000-dimensional observation space
– Proposed method: regularized learner (SVM) to explicitly control tradeoff 

between training error & generalization error
– Resulting constraints:

• Choice of binary distinctions is important: choose distinctive features
• Choice of time alignment is important: train place SVMs at landmarks

• Lexical modeling:
– Target problem: increase flexibility of pronunciation model without over-

generating pronunciation variants
– Proposed method: factor the probability of pronunciation variants into 

misalignment & reduction probabilities of 5 hidden articulators
– Resulting constraints:

• Choice of factors is important: choose articulatory factors
• Integration of SVMs into Bayesian model is an interesting problem

• Lattice rescoring:
– Target problem: integrate word-level side information into a lattice
– Proposed method: amoeba search optimization of stream weights
– Potential problems: amoeba search may only work for N-best lists



Extra Slides



Stop Detection using Support Vector Machines
False Acceptance vs. False Rejection Errors, TIMIT, per 10ms frame

SVM Landmark Detector: Half the Error of an HMM

(3) Linear SVM: 
EER = 0.15%

(4) Kernel SVM: 
Equal Error Rate=0.13%

Niyogi & Burges, 1999, 2002

(1) Delta-Energy (“Deriv”): 
Equal Error Rate = 0.2%

(2) HMM (*): False 
Rejection Error=0.3%



Manner Class Recognition Accuracy 
in TIMIT (errors per phoneme)

13 Mixture HMM
(22716 parameters)
(Borys & Hasegawa-Johnson)

Landmark SVM
(160 parameters)
(Juneja & Espy-Wilson)

speech vs. silence 80.2% 94.1

+vocalic vs. –vocalic 77.8 78.9

+sonorant vs. –sonorant 77.8 93.4

+continuant vs. 
–continuant

77.0 93.7

Vowel vs. Glide vs. Nasal 
vs. Stop  vs.  Fricative

73.5 79.8



Place Classification Accuracy, RBF 
SVMs observing MFCCs+formants in 
110ms window at consonant release

TIMIT NTIMIT ICSI Switchboard

Lips-stop 95.0% 90.5 83.1

Blade-stop 85.1 83.3 63.7

Body-stop 87.2 88.1 82.1

Lips-fric 89.9

Anterior 87.8

Strident 82.3
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