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Introduction – auditory processing and 
automatic speech recognition 

n  I was originally trained in auditory perception, and my original 
work was in binaural hearing 

n  Over the past 20-25 years, I have been spending the bulk of my 
time trying to improve the accuracy of automatic speech 
recognition systems in difficult acoustical environments 

n  In this talk I would like to discuss some of the ways in my 
group (and many others) have been attempting to apply 
knowledge of auditory perception to improve ASR accuracy 
–  Comment: approaches can be more or less faithful to physiology and 

psychophysics 
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The big questions …. 

n  How can knowledge of auditory physiology and perception 
improve speech recognition accuracy? 

n  Can speech recognition results tell us anything we don’t 
already know about auditory processing? 

n  What aspects of the processing are most valuable for robust 
feature extraction? 
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Two historical notes 

n  Everything is changing with deep learning 
–  Is there a role for “traditional” robust speech technologies? 

n  Knowledge-based versus statistically-based processing 
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So what I will do is …. 

n  Briefly review some of the major physiological and 
psychophysical results that motivate the models 

n  Briefly review and discuss the major “classical” auditory 
models of the 1980s 
–  Seneff, Lyon, and Ghitza 

n  Review some of the major new trends in today’s models 

n  Talk about some representative issues that have driven work 
as of late at CMU and what we have learned from them 
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Speech recognition as pattern classification 

n  Major functional components: 
–  Signal processing to extract features from speech waveforms 

–  Comparison of features to pre-stored representations 

n  Important design choices: 
–  Choice of features 

–  Specific method of comparing features to stored representations 

Feature extraction Decision making!
procedure 

Speech features 
Utterance 
hypotheses 
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Default signal processing:  
Mel frequency cepstral coefficients (MFCCs) 

Comment: 20-ms time slices are modeled by smoothed spectra, 
with attention paid to auditory frequency selectivity 
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What the speech recognizer sees …. 
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Comments on the MFCC representation 

n  It’s very “blurry” compared to a wideband spectrogram! 

n  Aspects of auditory processing represented: 
–   Frequency selectivity and spectral bandwidth (but using a constant 

analysis window duration!) 
»  Wavelet schemes exploit time-frequency resolution better 

–  Nonlinear amplitude response 

n  Aspects of auditory processing NOT represented: 
–  Detailed timing structure 

–  Lateral suppression 

–  Enhancement of temporal contrast 

–  Other auditory nonlinearities 
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Basic auditory anatomy 

n  Structures involved in auditory processing: If using Internet Explorer, please enable the website to show active content for the full multimedia experience. To enable active content, click on the yellow

bar that appears above and click "Allow Blocked Content". Then click 'yes' for the Security Warning.
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Excitation along the basilar membrane 
(courtesy James Hudspeth, HHMI) 
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Central auditory pathways 

n  There is a lot going on! 

n  For the most part, we only 
consider the response of 
the auditory nerve 

–  It is in series with everything else 
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Transient response of auditory-nerve fibers 

n  Histograms of response to tone bursts (Kiang et al., 1965): 

 

Comment: Onsets and offsets produce overshoot 
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Frequency response of auditory-nerve fibers: 
tuning curves 

n  Threshold level for auditory-nerve response to tones: 

n  Note dependence of bandwidth on center frequency and 
asymmetry of response 
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Typical response of auditory-nerve fibers as a 
function of stimulus level 

n  Typical response of auditory-nerve fibers to tones as a 
function of intensity: 

n  Comment: 
–  Saturation and limited dynamic range 
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Synchronized auditory-nerve response 
to low-frequency tones 

n  Comment: response remains synchronized over a wide range 
of intensities 
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Comments on synchronized auditory response 

 

n  Nerve fibers synchronize to fine structure at “low” frequencies, 
signal envelopes at high frequencies 

n  Synchrony clearly important for auditory localization 

n  Synchrony could be important for monaural processing of 
complex signals as well 
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Lateral suppression in auditory processing 

n  Auditory-nerve response to pairs of tones: 

n  Comment: Lateral suppression enhances local contrast in 
frequency 
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Auditory frequency selectivity: critical bands 

n  Measurements of psychophysical filter bandwidth by various 
methods: 

 

n  Comments: 
–  Bandwidth increases with center frequency 

–  Solid curve is “Equivalent Rectangular Bandwidth” (ERB) 
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Three perceptual auditory frequency scales 

Bark scale: 
         (DE) 
 
 
 
Mel scale: 
        (USA) 
 
 
 
ERB scale: 
         (UK) 

Bark( f ) =

.01 f ,   0 ≤ f < 500

.007 f +1.5,    500 ≤ f < 1220

6ln( f ) − 32.6,    1220 ≤ f

 

 
 

 
 

Mel( f ) = 2595 log10(1 +
f

700
)

ERB( f ) = 24.7(4.37 f +1)
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Comparison of normalized perceptual 
frequency scales 

n  Bark scale (in blue), Mel scale (in red), and ERB scale (in 
green): 
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Perceptual masking of adjacent spectro-
temporal components 

n  Spectral masking: 
–  Intense signals at a given frequency mask adjacent frequencies 

(asymmetrically) 

n  Temporal masking: 
–  Intense signals at a given frequency can mask successive input at that 

frequency (and to some extent before the masker occurs!) 

 

n  These phenomena are an important part of the auditory models 
used in perceptual audio coding (such as in creating MP3 files) 
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The loudness of sounds 

n  Equal loudness contours (Fletcher-Munson curves): 
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Summary of basic auditory physiology and 
perception 

n  Major monaural physiological attributes: 
–  Frequency analysis in parallel channels 

–  Preservation of temporal fine structure 

–  Limited dynamic range in individual channels 

–  Enhancement of temporal contrast (at onsets and offsets) 

–  Enhancement of spectral contrast (at adjacent frequencies) 

n  Most major physiological attributes have psychophysical 
correlates 

n  Most physiological and psychophysical effects are not 
preserved in conventional representations for speech 
recognition 
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Auditory models in the 1980s: the Seneff model 

n  Overall model: 

 

 

 
n  Detail of Stage II: 

–  An early well-known 
auditory model 

–  In addition to mean rate, 
used “Generalized 
Synchrony Detector” to 
extract synchrony 
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Auditory models in the 1980s: 
Ghitza’s EIH model 

IH-1
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FILTER-1

L-1

L-7 IH-7
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INTERVAL

HISTOGRAMS

–  Estimated timing 
information from 
ensembles of zero 
crossings with different 
thresholds 
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Auditory models in the 1980s: 
Lyon’s auditory model 

n  Single stage of the Lyon 
auditory model: 

–  Lyon model included 
nonlinear compression, 
lateral suppression, 
temporal effects 

–  Also added correlograms 
(autocorrelation and 
crosscorrelation of model 
outputs) 

–

HALF-WAVE 

RECTIFIER

1-kHZ 

LOWPASS

GAIN A H-B

H-C

LIMIT
+

Target

GAIN C

GAIN B
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And one more … 
Cohen’s model (1989)  

512-Point
FFT

CRITICAL-BAND
FILTERS

LOUDNESS
NORMALIZATION

POWER-LAW
COMPRESSION

SHORT-TERM
ADAPTATION

– Loudness 
normalization and 
transient enhancement 
novel for the time 

– Used successfully as 
part of many IBM 
systems 
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The other standard approach: Perceptual 
Linear Prediction (PLP, Hermansky ‘90) 

n  Comments: 
–  A pragmatic approach to auditory modeling 

–  Pre-emphasis, loudness normalization based on threshold of hearing 

–  RASTA enhancement provides cepstral normalization and modulation 
filtering 

–  Widely used with success today 
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Auditory modeling was expensive: 
Computational complexity of Seneff model 

n  Number of multiplications per ms of speech (from Ohshima and 
Stern, 1994): 
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Summary: early auditory models 

n  The models developed in the 1980s included: 
–  “Realistic” auditory filtering  

–  “Realistic” auditory nonlnearity 

–  Synchrony extraction 

–  Lateral suppression 

–  Higher order processing through auto-correlation and cross-correlation 

n  Every system developer had his or her own idea of what was 
important 
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Evaluation of early auditory models 
(Ohshima and Stern, 1994) 

n  Not much quantitative evaluation actually performed 

n  General trends of results: 
–  Physiological processing did not help much (if at all) for clean speech 

–  More substantial improvements observed for degraded input 

–  Benefits generally do not exceed what could be achieved with more 
prosaic approaches (e.g. CDCN/VTS in our case). 
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Other reasons why work on auditory models 
subsided in the late 1980s … 

n  Failure to obtain a good statistical match between 
characteristics of features and speech recognition system 
–  Ameliorated by subsequent development of continuous HMMs 

n  More pressing need to solve other basic speech recognition 
problems 
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Renaissance in the 1990s! 

By the late 1990s, physiologically-motivated and perceptually-
motivated approaches to signal processing began to flourish 

 

Some major new trends …. 

n  Computation no longer such a limiting factor 

n  Serious attention to temporal evolution 

n  Attention to reverberation 

n  Binaural processing 

n  More effective and mature approaches to information fusion 
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Peripheral auditory modeling at CMU 2004–now 

n  Foci of activities: 
–  Representing synchrony 

–  The shape of the rate-intensity function 

–  Revisiting analysis duration 

–  Revisiting frequency resolution 

–  Onset enhancement 

–  Modulation filtering 

–  Binaural and “polyaural” techniques 

–  Auditory scene analysis: common frequency modulation 
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Speech representation using mean rate 

n  Representation of vowels by Young and Sachs using mean 
rate: 

 

n  Mean rate representation does not preserve spectral 
information 
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Speech representation using average localized 
synchrony rate 

n  Representation of vowels by Young and Sachs using ALSR: 
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Physiologically-motivated signal processing: 
the Zhang-Carney model of the periphery 

n  We used the “synapse 
output” as the basis for 
further processing 
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Physiologically-motivated signal processing: 
synchrony and mean-rate detection (Kim/Chiu ‘06) 

n  Synchrony response is 
smeared across frequency to 
remove pitch effects 

n  Higher frequencies represented 
by mean rate of firing 

n  Synchrony and mean rate 
combined additively 

n  Much more processing than 
MFCCs 
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Comparing auditory processing with 
cepstral analysis: clean speech 

Original 
spectrogram 

MFCC 
reconstruction 

Auditory 
analysis 
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Comparing auditory processing with 
cepstral analysis: 20-dB SNR 
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Comparing auditory processing with 
cepstral analysis: 10-dB SNR 
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Comparing auditory processing with 
cepstral analysis: 0-dB SNR 
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Auditory processing is more effective than 
MFCCs at low SNRs, especially in white noise 

n  Curves are shifted by 10-15 dB (greater improvement than obtained with VTS or CDCN) 

[Results from Kim et al., Interspeech 2006] 

Accuracy in background noise:    Accuracy in background music: 
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Do auditory models really need to be so 
complex? 

n  Model of Zhang et al. 2001:             A much simpler model: 
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Comparing simple and complex auditory 
models 

n  Comparing MFCC processing, a trivial (filter–rectify–compress) 
auditory model, and the full Carney-Zhang model (Chiu 2006): 
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The nonlinearity seems to be the most important 
attribute of the Seneff model (Chiu ‘08) 
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Why the nonlinearity seems to help … 
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Impact of auditory nonlinearity (Chiu) 
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PNCC processing (Kim and Stern, 2010,2014) 

n  A pragmatic implementation of a number of the principles 
described: 
–  Gammatone filterbanks 

–  Nonlinearity shaped to follow auditory processing 

–  “Medium-time” environmental compensation using nonlinearity cepstral 
highpass filtering in each channel 

–  Enhancement of envelope onsets 

–  Computationally efficient implementation 
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An integrated front end: power-normalized 
cepstral coefficients (PNCC, Kim ‘10) 
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An integrated front end: power-normalized 
cepstral coefficients (PNCC, Kim ‘10) 
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An integrated front end: power-normalized 
cepstral coefficients (PNCC, Kim ‘10) 

STFT
Triangular

Freq Wtg

Logarithmic 

Nonlinearity
DCT

|H(    )|2!

STFT
Crit-Band 

Freq Wtg

Nonlinear 

Compression 

RASTA 

Filter

Nonlinear 

Expansion

Power-Law

Nonlinearity
IFFT

|H(    )|2!

Compute LPC-

based Cepstra

STFT
Gammatone

Freq Wtg

Noise 

Reduction

Temporal 

Masking

Frequency

Weighting

Power 

Normaliz..

Power-Law

Nonlinearity
DCT

|H(    )|2!

MFCC Processing

RASTA-PLP Processing

PNCC Processing

Exponent 1/15

Exponent 1/3



 !

         Slide 56 !ECE and LTI Robust Speech Group!

The nonlinearity in PNCC processing (Kim) 
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Frequency resolution 

n  Examined several types of frequency resolution 
–  MFCC triangular filters 

–  Gammatone filter shapes 

–  Truncated Gammatone filter shapes 

n  Most results do not depend greatly on filter shape 

n  Some sort of frequency integration is helpful when frequency-
based selection algorithms are used 
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Analysis window duration (Kim) 

n  Typical analysis window duration for speech recognition is 
~25-35 ms 

n  Optimal analysis window duration for estimation of 
environmental parameters is ~75-120 ms 

n  Best systems measure environmental parameters (including 
voice activity detection over a longer time interval but apply 
results to a short-duration analysis frame 
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Temporal Speech Properties: modulation filtering 

Output of speech and noise segments from 14th Mel filter (1050 Hz) 

n  Speech segment exhibits 
         greater fluctuations 

59!
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Nonlinear noise processing 

n  Use nonlinear cepstral highpass filtering to pass speech but 
not noise 

n  Why nonlinear?  
–  Need to keep results positive  because we are dealing with 

manipulations of signal power 



 !

         Slide 61 !ECE and LTI Robust Speech Group!

Asymmetric lowpass filtering (Kim, 2010) 

n  Overview of processing: 
–  Assume that noise components vary slowly compared to speech 

components 

–  Obtain a running estimate of noise level in each channel using nonlinear 
processing 

–  Subtract estimated noise level from speech 

n  An example:  

Note: Asymmetric highpass filtering is obtained by subtracting the 
lowpass filter output from the input  
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Implementing asymmetric lowpass filtering 
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Computational complexity of front ends 
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Performance of PNCC in white noise (RM) 
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Performance of PNCC in white noise (WSJ) 

! " #! #" $! %&'()
!

$!

*!

+!

,!

#!!

-./01234

5
6
6
7
8(
6
9
01
#
!
!
0!
0:
;
/
4

:-<!!"=01:>?@'0.A?B'4

C.%%

DE%%0F?@>0GH-

DE%%

/5-H5!CIC



 !

         Slide 67 !ECE and LTI Robust Speech Group!

Performance of PNCC in background music 
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Performance of PNCC in reverberation 
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Contributions of PNCC components: 
white noise (WSJ) 

+ Temporal masking!
+ Noise protection!
+ Medium-time time/freq anal!
Baseline MFCC with CMN!

+ Temporal masking!
+ Noise suppression!
+ Medium-duration processing !
Baseline MFCC + CMN!
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Contributions of PNCC components: 
background music (WSJ) 

+ Temporal masking!
+ Noise protection!
+ Medium-time time/freq anal!
Baseline MFCC with CMN!

+ Temporal masking!
+ Noise suppression!
+ Medium-duration processing !
Baseline MFCC + CMN!
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Contributions of PNCC components: 
reverberation (WSJ) 

+ Temporal masking!
+ Noise protection!
+ Medium-time time/freq anal!
Baseline MFCC with CMN!

+ Temporal masking!
+ Noise suppression!
+ Medium-duration processing !
Baseline MFCC + CMN!
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Effects of onset enhancement/temporal 
masking (SSF processing, Kim ‘10) 
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PNCC and SSF @Google 
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Summary … so what matters? 

n  Knowledge of the auditory system can certainly improve ASR 
accuracy: 
–  Use of synchrony 

–  Consideration of rate-intensity function 

–  Onset enhancement 

–  Nonlinear modulation filtering 

–  Selective reconstruction 

–  Consideration of processes mediating auditory scene analysis 
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Summary: PNCC processing  

n  PNCC processing includes 
–  More effective nonlinearity 

–  Parameter estimation for noise compensation and analysis based on 
longer analysis time and frequency spread 

–  Efficient noise compensation based on modulation filtering 

–  Onset enhancement 

–  Computationally-efficient implementation 

n  Not considered yet … 
–  Synchrony representation 

–  Lateral suppression 




