Pronunciation Variability

Emily Cooglan
Pronunciation Variability

• Clarity of pronunciation varies greatly

• Can we identify difficult-to-recognize speakers and utterances?

• A recognizer could make different decisions based on whether it was dealing with good or bad pronunciation, and possibly achieve greater accuracy
Preliminary Experiments

• No data labeled for pronunciation quality, so we need a computable metric
• Initially, used phone edit distance between the phonetic transcription and a dictionary of canonical pronunciations
 – Example: variety v ax r ay ih t iy
 observed: v r ay d iy
 2 deletions + 1 substitution = 3
• Currently using a weighted edit distance, depending on how many features (manner, place, or voicing) are changed
 – Same example: t→d = 1 (voicing)
 deletions worth 3 each
Preliminary Experiments

- Took the mean word pronunciation score over the entire utterance (x axis)
- Compared with number of word errors in the lattice output (y axis)
- Color represents density of data points at those coordinates
- Normalized correlation coefficient of 0.2105
Preliminary Experiments

- Compared score of individual words (x axis) with lattice output
- Calculated what percentage of words with that score the lattice got right (y axis)
- No evidence of correlation
Planned Experiments

• Investigate other metrics of pronunciation quality for transcribed data
 – Fix word-phone alignment
 – More precise phonetic distances

• Investigate metrics of pronunciation quality for untranscribed (test) data
 – Bushiness of the lattice
 – Difference in score of the best hypothesis and the second best
 – Pronunciation distance between the best lattice hypothesis and best landmark hypothesis
Planned Experiments

• Machine learning to score new utterances
• Speaker classification
 – Similar experiments but this time score over speaker rather than word or utterance
 – Try to identify good and bad speakers early in the conversation (after only a few utterances)
• Train separate DBN pronunciation models for good and bad speakers (or utterances) and use them in lattice rescoring
Summary

• Preliminary experiments have shown some correlation between pronunciation quality and recognizer error

• I want to identify good and bad utterances and speakers so that separate pronunciation models can be used to better recognize them