Maximum Entropy Techniques for min-WER Score Combination with Sausages

Kemal Sonmez

Summary Overview

- Goal: To improve lattice rescoring by including novel information sources with discriminatively trained weights
- Approach: Conditional probability model of the hypothesized word on a sausage edge being the true transcription
 - Exponential model conditioned on the context via a set of features
 - Maximum entropy (ME) estimation of the exponential model weights
- Bottom line: Not quite working yet, preliminary setup has so far not given a significant win (<0.1% abs)
- Future Work:
 - Discriminative framework for including side information in rescoring confusion networks, e.g. prosodic features --to be investigated further and many things in the pipeline to try

Talk Plan

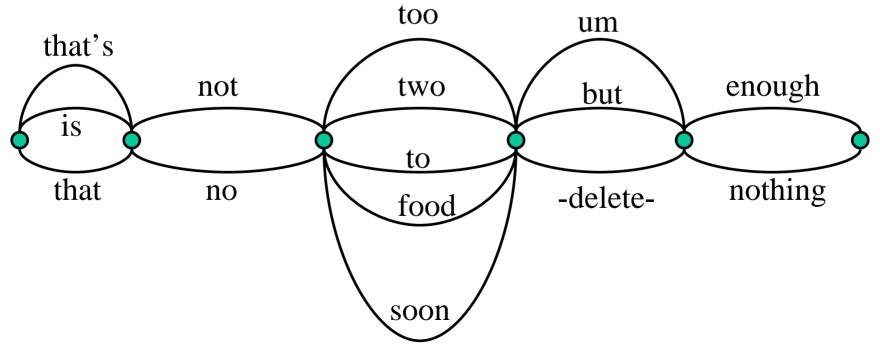
- Rationale
 - Lattices and confusion networks
- Brief synopsis of prior work on discriminative score combination
- Approach
 - Min WER by ME estimation of conditional exponential model over confusion networks
- Experiments
- Preliminary Results

Rationale

- Lattice rescoring is an important part of information combination in ASR
- Rescoring by confusion networks allows minimization of WER directly
- Confusion network oracle error rates leave room for significant improvements
- Ideally, the scores need to be combined in a discriminative manner
- We develop a framework for rescoring of confusion networks based on a discriminatively estimated conditional model

Lattices to Sausages

- Lattice rescoring plays an important role in information combination in ASR
- Confusion networks are compacted lattices with nodes merged into ordered equivalence classes
- Word-level rather than sentence-level posteriors
- Minimize (an upper bound on) WER directly



RT03-dev sausages

• How much room is left in RT03-devset confusion networks?

Max Depth in confusion network	WER		
top	25.8%		
2	23.9%		
3	23.0%		
4	22.4%		
5	22.0%		

Some recent prior work

- Sentence Error Rate minimization – Yu, Waibel, ICASSP 2004
- Word Error Rate minimization

 Mangu, Padmanabhan, ICASSP 2001
- Discriminative Model Combination

 Beyerlein, ASRU 1997

Prior Work

- Sentence Error Rate Minimization by Conditional Exponential Models (Yu,Waibel, ICASSP 2004)
- Conditional exponential model of score combination estimated by ME $f_1(obs, hyp) = \log p_{AM}(obs | hyp)$
- Set of feature functions:

 $f_2(obs, hyp) = \log p_{LM}(hyp)$

 $f_3(obs, hyp) = [\#words(hyp)]$

Similar to usual score combination, with a normalization term

$$\log P(hyp \mid obs) = \sum_{i} \lambda_{i} f_{i}(obs, hyp) - \log Z(obs)$$

• MMIE-like normalization computation

$$Z(obs) \approx \sum_{hyp(N-best)} \exp\left(\sum_{i} \lambda_{i} f_{i}(obs, hyp))\right)$$

Prior Work

- WER minimization via error correction over confusion networks (Mangu, Padmanabhan, ICASSP 2001)
 - Transformation-based learning to train rules to distinguish hypotheses in a confusion network using additional information
 - choose the 2nd candidate ('-') if 1st candidate is a short word with posterior < 0.46
- 0.5% absolute improvement on WS97

Conditional Exponential Models of Word Error

 Probability that wⁱ_e, the word on edge e of alignment is correct:

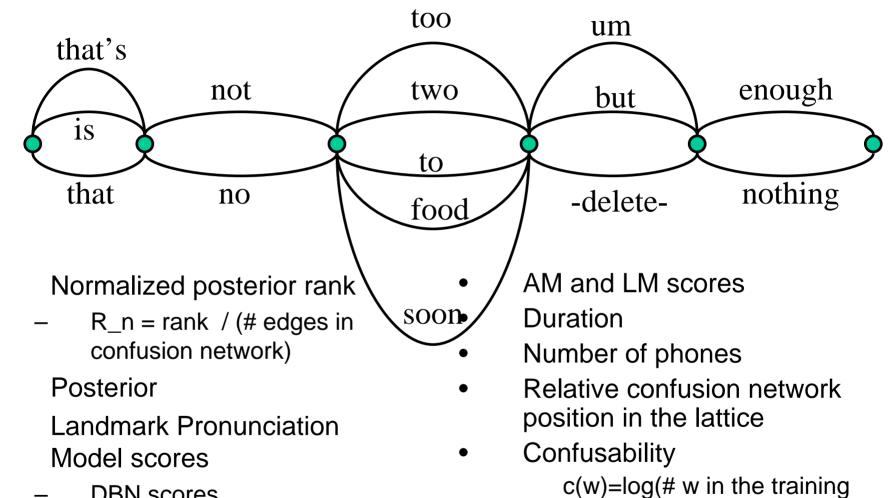
 $\log P(w_e^i = w_{ref}^i \mid context) = \sum_i \lambda_i f_i(context , w_e^i) - \log Z(context)$

• Features to represent sausage context

 $f_{1}(context, w_{e}^{i}) = \log p_{AM}$ $f_{2}(context, w_{e}^{i}) = \log p_{LM}$ $f_{3}(context, w_{e}^{i}) = \log p_{DBN}$ $f_{4}(context, w_{e}^{i}) = [\# words(hyp)]$

• Weights estimated by ME

Sausage Context Features



- **DBN** scores
- Discriminative pronunciation model scores
- Function word membership

confusion network set)

Delete feature

Experiments

- Selection of features
- Confidence smoothing
 - conf_score = p(top edge)/p(runner up edge)
 - rerank edges only if conf_score < threshold</p>
- Two ways of dealing with –delete- edges
 - Leave out sausages with deletes in the active depth
 - Include -delete- edges in the training with binary delete features (f_{delete} = 1[w = -delete-])
- Training edge depth into the confusion network:
 - True edge + top 2,3,4,5

Preliminary Results

- RT03 development set
 - sausages from 2000-best lists, aligned with references
 - divided into ME training (2000 sausages)
 and testing sets (930 sausages)
- Rescoring with ME trained posteriors
 - Test set performance:

system	sub	del	ins	WER
Baseline	16.8	10.9	3.5	31.1
Rescored with top2	16.8	10.9	3.5	31.1
Conf-rescored with top2	16.7	11.0	3.4	31.1

Preliminary Results

- RT03 development set
 - sausages from lattices, aligned with references
 - divided into ME training (2000 sausages)
 and testing sets (930 sausages)
- Rescoring with ME trained posteriors
 - Test set performance:

system	sub	del	ins	WER
Baseline	15.8	13.4	3.8	33.0
conf-rescored with sausage features	15.8	13.4	3.8	33.0
+ landmark (DBN) features	15.8	13.4	3.8	33.0

Summary and Future Work

- Sausage-based discriminative rescoring via ME
- Further work needed in assessing merits
 - as a score combination technique for landmark based pronunciation models as well as other side information
 - so far, results tentative and not conclusive
- Future Work:
 - New features from prosody
 - Stress accent levels
 - Energy and/or F₀ profiles
 - Many more things to try:
 - Interpolation of the exponential model with the original posterior
 - Confidence threshold informed by utterance and/or speaker characteristics (more in Emily's talk)