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Executive Summary: Landmark-
Based Speech Recognition

Scientific Objective:
A recognizer capable of learning, from data, the information structures apparently 
used by human subjects in speech processing experiments. 

Technological Objective:
Flexible acoustic and pronunciation models, in a high-dimensional observation 
space, with very low generalization error.

Systems Implemented and Tested:
1. Binary phonetic classifiers: place of articulation classification error dropped 10-50% 

relative to start of workshop
2. Dynamic Bayesian Network model of pronunciation variability: Computational 

complexity of an SVM-EBS-DBN hybrid model reduced from ~2000RT to ~100RT.  
Computational complexity of an SVM-DBN model is still ~1000RT, but dropping.  
No WER reduction yet on RT03 development set

3. Discriminative Pronunciation Model driven by analysis of word-lattice confusion 
networks

4. Maximum entropy score combination system for stream weight estimation in an 
augmented lattice

Current bottom line:
Systems 3 & 4 separately are each getting a non-significant WER reduction on the 
RT03 development set.



Outline of this talk
1. Motivation

1. Why do we believe that landmark-based and gesture-
based methods can reduce WER?

2. Why test in a lattice rescoring paradigm?
2. System architecture

1. System 1: a generative model (DBN+SVM) based on 
articulatory phonology

2. System 2: a discriminative model (MaxEnt) targeted at 
word errors in a confusion network

3. Future plans
1. … for the next twelve months
2. … for the rest of the afternoon



Scientific motivation: Human speech 
perception is landmark-synchronous, and 

mediated by phonology
• “Landmark-Based Speech Perception” (Stevens):

– Manner-Change Landmarks:
• Human recognition of consonants requires 40ms excised after release or before 

closure (Furui)
• Humans recognize vowels better if given vowel onset and offset (3 glottal pulses 

each) than if given the “steady-state” part of the vowel (all other glottal pulses) 
(Strange et al.)

• Supported by our results for stops, nasals, fricatives (landmark place of articulation 
error: 10-20%, segment-internal place error: 20-50%)

– Vowel-peak and Glide-dip landmarks:
• Hillenbrand et al (1995): dynamic spectral measurements covering both vowel peak 

and offglide are necessary to classify the vowel 
• Supported by our results for vowels and glides (segment-internal place classification 

error: 9-15%, landmark error: 12-20%)
– Errors in perception of nasality, frication, stridency, place, and voicing are 

independent (Miller and Nicely)
• “Articulatory Phonology” (Browman and Goldstein)

– In VCV utterances: manner of C can change, never place
– In VCCV: either C can assimilate features of the other, but new features are 

never created from scratch



Technological goal: Improved precision of the 
acoustic model and pronunciation model

• Acoustic Model
– Place of articulation is encoded by the whole pattern of change in spectral, 

formant, and rate-scale features (70ms following consonant release) 
– Dynamic spectrum is a large observation vector (200-10000 dim)
– Generalization from a high-dimensional observation: use SVMs
– Result: well-selected new observation dimensions reduce classification 

error up to the point where number of observation dimensions is almost 
equal to number of training frames

• Pronunciation Model
– Switchboard contains dozens of pronunciations per word
– Multiple-pronunciation dictionaries reduce WER after ~1.5/word
– Model 1, “articulatory phonology:” represent parameter tying among 

pronunciation variants using a dynamic Bayesian network
– Model 2, “discriminative pronunciation model:” find a small number of 

landmarks whose overlap or sequence distinguishes the word from 
competing words



Why lattice rescoring is a useful test…
• The goal of precise acoustic and precise pronunciation modeling

– … is to improve our ability to correctly recognize words
– Standard evaluation metric for this capability is WER

• Complementary information
– Objective of the landmark-based system: explicit models of spectral 

dynamics, in a 2000-dimensional observation space (spectrogram+short-
time-energies+formants+auditory model) that is (we believe) different
from the observation space modeled by the HMM

– Augmenting lattice edge scores with complementary information can 
sometimes reduce WER

• Simplified problem
– System 1, articulatory phonology: computational complexity too high for 

first-pass recognition
– System 2, discriminative pronunciation model: constrained use of

landmarks to fix errors in the first-pass system without introducing new 
errors



… and why lattice rescoring is not a 
perfect test

• Word boundary times in lattice may include landmarks 
from neighboring words, or leave out landmarks from 
target word

• Correct transcription is not always in the lattice
• Word errors in the lattice are caused by a combination 

of many factors affecting both language model and 
acoustic model

– Language model score of incorrect transcription is often much 
better than that of correct transcription

– Large difference in language model scores may swamp small 
improvements in the acoustic score



System architectures 
developed during WS04

• Binary acoustic phonetic classifiers for
– Detecting a manner-change landmark
– Classifying place of articulation at each landmark and at each 

segment-internal frame

• DBN-SVM model of pronunciation variability
• Discriminative pronunciation model for rescoring of 

confusion networks
• Maximum Entropy method for estimating stream 

weights for lattice rescoring



DBN-SVM model of pronunciation 
variability
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Discriminative pronunciation 
modeling
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Maximum entropy estimation of stream 
weights for lattice rescoring
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Current results:
Training corpus: 20% WER (17% reduction)
Development test corpus: 12 word reduction in WER (<0.1%) 



Future Plans: 
for the next twelve months

• Full DBN+SVM hybrid system, with all classifier context 
dependencies encoded as edges in the DBN, will be made 
practical and then tested.  Proposed task: lattice rescoring 
on Hub-5 data

• Systems intermediate between HMM and DBN+SVM will 
be developed and tested

• Progressively improved acoustic classifiers will be tested in 
both MaxEnt and DBN+SVM systems

• Maximum entropy lattice rescoring will be tested with 
prosodic, syntactic, and other word-level side information

• Mathematical analysis will study DBN+SVM integration in 
both training and test



Future Plans: 
for the rest of the afternoon

• Technical presentations
• Amit Juneja: Distinctive feature detection and landmark-based 

rescoring
• Karen Livescu: Feature/Landmark-based pronunciation modeling 

using dynamic Bayesian networks
• Katrin Kirchhoff: Discriminative rescoring using landmarks
• Kemal Sonmez: Maximum entropy techniques for min-WER score 

combination with sausages
• Steve Greenberg: Beyond landmarks

• Coffee break
• Student proposals for post-workshop research

• Srividya Mohan: Automatic identification and classification of 
words using phonetic and prosodic features

• Emily Coogan: Pronunciation variability
• Tianyu Wang: Glottalization and vowel nasalization detection
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