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Research Issues

• HMMs and n-grams are reaching limits
– Not much improvement just from more data
– Not good at learning structure

• Much existing knowledge is not correctly 
represented
– Articulation
– Speaker variability and dialects
– Common sense language knowledge



Salient New Features
• Eliminate dependency on HMMs
• Eliminate dependency on EM algorithm
• Detailed articulatory modeling
• Knowledge acquistion from large number 

of informants
• Formulation of training as massive 

constrained optimization problem
• Training on millions of hours of speech 

and trillions of words of text



Elements of New Methodology
• Overall architecture: System of systems
• Knowledge of speech production
• Speaker variation and dialect modeling
• Knowledge acquisition from large number of 

informants
• Large quantity of data and knowledge
• Virtual reality, role playing game
• Pairwise hypothesis rescoring
• Scaling and distributed computing



System of systems
• Multi-tiered approach
• Multiple instantiations for each tier for 

robustness
• Intelligent (“glass box”) cooperation

– For computational efficiency and robustness
• Subsystems optimized for specialized tasks

– For computational efficiency and minimum error rate
• Final rescoring does not need to be probability 

model based
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Detailed Acoustic Knowledge
• Knowledge of speech production

– Hypothesis scoring by “mimic” synthesis
• One score component for parameter tracks conditioned on 

hypothesis
• 2nd Score component for match to observed acoustics

• Asynchronous articulatory streams
• Abductive inference

– Require explanations for all observed events (both in 
training and in recognition)

– Score plausibility of explanation



“Mimic” Synthesis
• Hypothesis specific “verification by synthesis”
• Conditions:

– Known text
– Known sample of speech
– No limit on number of bits
– Must resynthesize from parametric model conditioned on 

hypothesized states in “hidden” tiers
• We know more than normal compression (script)
• We know more than normal TTS (speech sample)
• Get knowledge of hidden states
• Each Voice Model is as detailed as TTS voice

– Use (say) 100 hours of recordings per voice
• Top down analysis in context of rescoring



Top Down Analysis
• Computational efficiency

– Top down search is computationally expensive
– Bottom-up detection can be computationally very 

efficient (FastMatch, look-ahead, etc.)
– Top down analysis in rescoring takes much less 

computation than in search
• Combines with abductive inference

– Analysis must explain all observed events
– Give special attention to “unusual” events



Speaker Variation and Dialect 
Modeling

• Each voice is modeled as a parametrizied 
manifold
– Requires full voice models for a set of prototype 

voices
• Speaker variation and dialect are modeled as 

smooth manifold transformations
– Interpolate to model other voices

• Speaker variability is not a random variable 
independently sampled every 10 milliseconds



Knowledge Acquired from Large 
Number of Informants

• All speakers of a language have common everyday 
language knowledge that far exceeds our best systems

• Acquire this knowledge as a large number of small 
factoids

• Acquire factoids through high volume computer 
applications with interactive use of speech and language
– The application may be based on a speech or language task 

important to the user
– The application may simply be fun (a game)

• Can also acquire large quantity of recorded speech and 
data of speech perception



Kinds of Knowledge from 
Informants

• Language knowledge (e.g. can the informant correct an 
error from given context)
– Correction from text only
– Correction from limited context

• Speech perception
– Knowledge complementary to production knowledge
– Can find boundaries of decision surface

• Read speech
• Correction of recognition
• Can present informants with artificially generated errors

– Warning: statistically biased sampling
– Advantage: Can directly measure decision boundary



How to Get Millions of Informants

• Have the knowledge acquisition process be an 
integral part of a large volume application
– Example: A MMORPG within a fantasy/sci-fi setting 

requiring communication among the characters 
across multiple natural and artificial languages

• Players must communicate with other characters using 
errorful speech-to-speech translation devices

• Players actively work to teach their devices to get better
• The game uses simulated errors as well as real errors

– Other examples: real translation, real speech 
recognition, language learning



Quantity of Data
• Millions of hours of speech
• Trillions of words of text

• Such a quantity of data is available
• New training algorithms are proposed for 

distributed computing
• The methodology provides for semi-supervised 

training
• New multi-tiered micro-detailed models can 

utilize the knowledge from such a quantity of 
data



Different Objectives for Different 
Components

• The purpose of FastMatch is to get the 
correct answer on the short list, not to get 
it to rank 1

• The purpose of the Search Match is to 
produce a lattice with the correct 
hypothesis, not to get the correct 
hypothesis to have the best score

• Only the final rescoring has to give the 
correct answer the best score



Paradox: Language Model for 
Search

• The correct language model (even if known 
exactly) is not the best language model for 
search
– Example: A large grammar with many canned 

phrases in a noisy environment
• When the best scoring (but wrong) hypothesis is in the 

middle of a long canned phrase it’s language model may 
cause the correct hypothesis to be pruned

• On the other hand, correctly giving the correct hypothesis a 
very good LM score only reduces computation for an answer 
we would get right anyway

• A less “sharp” LM will give more accurate search
• All models must be optimized for their specific 

task (which is not the same as the ML estimator)



Constrained Optimization
• In rescoring, all that really matters is the correction of 

errors!!
– This can always be formulated as a constrained optimization 

problem, regardless of the underlying models used in the base 
system

– For training data, focus on just two hypotheses:
• The current best scoring hypothesis
• The correct hypothesis
• Build a custom discriminator for “difference events” R(H1,H2)

– Note: This is a completely different process than conventional training
– Completely different (new) models
– Also different even from “corrective” training

• Each error or close call produces a constraint
• Each factoid from an informant produces a constraint
• Training for either acoustic models or language models



Compare Just Two Hypotheses
• Only “difference events” matter

– Do not need to match against a sequential stochastic process
– Build a context-dependent rescoring model for each difference 

event (does not need to be a probability model)
• The error is corrected if the revised score, taking account 

of all the difference events, is better for the correct 
hypothesis

• Arbitrary models may be used
– Not restricted to corrective training of parameters in existing 

models
– Not restricted to models interpreted as probability distributions
– Exponential models do not necessarily require evaluation of 

partition function (because it is the same in the numerator and 
denominator of log likelihood ratio)



Probability Modeling vs Hypothesis 
Comparison

• Corrective training of GMM parameters is 
an improvement over Maximum Likelihood

• GMM parameters are a special case of 
general non-linear regression

• Regularization improves generalization
• ML < CT < NR < RNR



Form of Optimization Problem
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Problem: There may be millions of constraints (i) and millions of terms (j).

Potential Solution: Distribute problem among millions of computers.

New Problem: How to do massively distributed computation.  Avoid computing 
a(i,j) if i data and j are on different computers.
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Φ may be based on a kernel function:



Scaling Problem Size

• Some algorithms do not scale
– Standard SVM training (quadratic 

programming)
• Generally regarded as scaling only to thousands of 

constraints
– Simplex method (linear programming)

• Selecting new variable to enter basis appears to 
require products of data available only at different 
distributed sites



Distributed Computing
• Special property of our problem: “soft” 

constraints
– No point is truly “infeasible”
– Idea: Combine phase 1 “feasibility” computation with 

phase 2 optimization computation
• Possible solution methods for distributed 

computing:
– Interior point/barrier function methods
– Primal/dual active set methods

• Additional benefit – new data can be 
incorporated incrementally without redoing 
“phase 1” feasibility computation
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Distributed Knowledge Acquisition

• One shot learning (can be learned in isolation)
– New words
– New pronunciations

• Naturally distributed
– Estimation of hidden variables
– Collection of factoids

• Must be coordinated
– Context-dependent rules or conditional probabilities
– Systematic relationships (e.g. dialects)



Summary of New Features (1)
• Multi-tiered
• Use of Model of reliability of components
• Intelligent combining for computational efficiency and 

robustness
• Detailed speech production modeling
• Abductive inference
• Speaker variability as smooth manifold transform
• Large number of language “factoids”
• Valency based structured language model
• Knowledge acquisition from large number of informants
• Knowledge acquisition from artificially created errors



Summary of New Features (2)
• Not dependent on HMM modeling
• Pairwise comparison of hypotheses
• Minimum error rate as a constrained optimization 

problem
• Large quantity of data and knowledge

– Millions of hours of speech
– Trillions of words of text
– Semi-supervised training (millions of factoids)

• Massively distributed computing
– Millions of constraints
– Millions of variables
– Thousands (perhaps millions) of computers
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