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1 Introduction

There has been a renewed spurt of research activity in Multimedia Information Retrieval. This can be partly
attributed to the emergence of a NIST-sponsored video analysis track at TRECJ1], coinciding with a renewed
interest from industry and government in developing techniques for mining multimedia data.

Majority of the state-of-the-art multimedia retrieval systems are a system-level combination of speech-based
retrieval techniques and image content-based retrieval techniques. It is our hypothesis that such system-
level integration allows only limited exploitation of cues that occur in the different modalities. In addition,
techniques used in retrieval systems using images and speech differ vastly and this further inhibits inter-
action between these systems for multimedia information retrieval. For instance, if the query words have
been incorrectly recognized then speech-based retrieval systems may fail. Current systems back-off to im-
age content-based searches and since image retrieval systems perform poorly for finding images related by
semantics, the overall performance of such late-fusion systems can be poor. This situation is exacerbated in
cross-language information retrieval where there is an additional degradation in the text transcript resulting
from machine translation.

In this workshop, we investigate a unified approach to multimedia information retrieval. We represent a
multimedia document in terms of visual and textual tokens and build various joint statistical models. This
allows us to treat multimedia retrieval as a task of retrieving document comprising visual tokens and words;
A generalization of statistical text retrieval models into multimedia retrieval models. With joint visual-text
modeling, we demonstrate that we can better represent the relationships between words and the associated
visual cues. In this work, we phrase the multimedia retrieval task in terms of a generative model. That is,
we model the different ways the query ¢ is generated from the document d. We then rank the documents
using p(d|q), or given a query q, the probability that the document d generated it. To illustrate and validate
the usefulness of this approach, we build automatic multimedia retrieval systems, and present experimental
results on the TRECVIDO03 corpus and queries.

2 Retrieval Models

Given a query, q, we want to rank documents, d, according to p(d|q) as in any other probabilistic information
retrieval problem formulation. In our case this can be expanded as below.

p(d|q) = p(dw,dv|dw,qv)

— p(qW7qV|dW7dV)p(dW7dv> (1)

P(Qw,qv)




In Eq. 1 the denominator can be ignored for ranking documents given any query. In addition, at present we
will assume that all documents are equally likely. Any relaxation of this assumption can be done externally
and applied to all the models that we develop here. This simplifies Eq. 1 to

p(d|q) o p(Qw, gv|dw, dv) (2)

There may not be enough data to jointly model the above, necessiating the simplifying assumptions. Eq. 2
will get factored into different forms depending on the modeling assumptions made. The first simplification we
will make is to assume that the query word tokens and visual tokens (visterms) are conditionally independent
given the document. That is the right-hand side of Eq. 2 can be written down as

p(Aw, Av|dw,dv) = p(qw|dw, dv) X p(qv|dw,dv) 3)

2.1 Linear Mixture Model

Consider the term p(qw|dw,dy). We can choose to approximate it with a linear mixture model:

P(awldw, dv) = Awp(qw|dw) + (1 = Ay)p(qw|dy) (4)

Now, each of the two sub-components can be independently estimated using two different models. Another
choice is to completely ignore the second term (equivalent to setting the mixture weight A\, = 1). We can
model the visual term p(qy|dwdy) similarly:

p(qv|dWa dv) = )‘vp(qvldw) + (1 - )‘v)p(qvldv) (5)

Putting it all together, we get

P(dw; qv|dw,dy) = ()\wp(q“'|dw) + (1= Auw)p(qwldy)) x (6)
()‘vp(qvldw) + (1 - )‘v)p(QVldv))

In addition, people have typically found that putting different weights on the different modalities usually
helps. So, we extend this equation to

P(Aw, Qvldw, dv) = Awp(qwldw) + (1 = Aw)p(awldy))* @ x (7)

(Avp(avldw) + (1 — /\v)p(QV|dV))1_ﬁ(q)
where 3(q) is a query-dependent weighting of the different modalities. This will be the most general form
that we will be considering. Most models that we will consider can be seen as special cases of this model.

We will drop 3(q) from the equations with the understanding that it is external to this discussion and can
always be introduced into every model we detail'.

2.2 Log Linear Model

Below is a maximum-entropy inspired approach which could be an alternative to the linear model. To
simplify matters we will start with the problem of estimating

p(dw,dv, Qw; av) (8)

The full probability is difficult to estimate because of a lack of training data. Hence, we will assume that
only pair distributions (e.g. p(dw,dy) or p(dw,qy)) can be reliably estimated. This amounts to a set of
constraint equations:

IIBM’s TRECVID 2003 experiments suggest that a good £(q) is quite valuable.



Z p(dw, dv, dw; av) = p(dw; dv) 9)

doy ,dy

Z p(dwadvan7qv) :p(dvaCIV) (10)
dw,quw

Z p(dw, dv, dw; qv) = p(dv, qw) (11)
dw,qv

Z p(dwadanWaqv) :p(dwaQV) (12)
do,quw

Z p(dwvdvvqwaQV) :p(dquw) (13)
dy,qu

Z p(dw,dquy(lv) :p(dW7dv) (14)
qw,qv

Using a maximum entropy approach a probability distribution can be found that satisfies all six constraints.

Instead of doing a full maximum entropy approach, we will just do one iteration of generalized iterative
scaling (GIS).
Assuming statistical independence of all four random variables the initial distribution is:

po(dw, dvaw, dv) = p(dw)p(dv)p(aw)p(av) (15)
After one iteration of GIS we arrive at:

1 plaw, av) \
pl(dw7dV7qW7qV) = ZPO(dW7dv>qw7qv) (()>

( p(dv,ay) )Az ( p(dy, qw) ) (p;?;vw:(i; )M
(dv)p(av)/)  \p(dv)p(aw) (dw)p(av)
(ﬁfiiv;}o?évj)) G <(d>’((m>> (16)

where Z is a normalization and the \; are weights for the six constraint equations. Ignoring all terms that
do not matter for the decision and also assuming a uniform distribution for p(dy, dy) gives:

P1 (dwa dva qQw, qv) X (p(dV7 qv)))\2 (p(dV7 qW)))\3
(P(dw, av))™ (P(dw, Gw)) ™ (17)

This can be transformed into

P1(Aws Av|dw, dv)  (p(av|dv))™ (p(aw|dy))™
(p(av|dw)) ™ (p(aw|dw))™ (18)

This framework has been tested in language modeling. There, it usually outperformed linear interpolation.
It may be an alternative to Eq. 6. Note that it has the same number of free parameters, as one of the
exponents can be set to one without any influence on the ranking of the documents. We note here that this
approach uses the same component conditional probabilities as in Eq. 6. Whenever appropriate, this model
can be used instead of the linear mixture model.
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Figure 1: The manual and interactive system designs permitted by NIST in TRECVID evaluations
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Figure 2: Automatic Multimedia Information Retrieval: System design

3 Baseline System

In multimedia retrieval tasks, text-based systems have outperformed image content-based systems by a wide
margin. Therefore, we will compare the joint-modeling based systems with text-based systems. In addition,
while NIST permits manual and interactive query runs where a system operator interprets the query and
fires the retrieval system appropriately, we will restrict our experiments to automatic systems where there is
no human intervention. This choice is to restrict our system design to only the algorithmic issues and ignore
the system interface related choices. Figures 1 and 2 illustrate the differences between NIST and our system
designs.

In the framework that we propose, the baseline system is obtained by setting A,, = 1 and leaving out the
visual component. We further assume that all the words in the document are independent of each other
given the document, i.e. the bag of words document model. This results in a simple unigram language model
over the words in a document[2]. We get

m

H P(qu,

i=1

p(aw|dw) = (19)

p(quqv|dwadv) - dw)

where qw; are the words in the query. p(w|d) can be modeled using a variety of smoothing techniques. For



illustration, we use the Jelinek-Mercer smoothing to give us

#(w,d)

p(wid) = o

+ (1 —a)p(w|C) (20)
where #(w,d) is the number of times the word w occurs in document d and |d| is the total number of
words in that document. C is the entire corpus of documents. In addition, we can attempt to relate query
words to document words by performing semantic smoothing using a markov chain or estimating a stochastic
dictionary using machine translation (see [3, 4] for examples of both approaches). For our baseline, we chose
unigram modeling and smoothing with Dirichlet prior as this gave the best results on the test data.

4 Visual Feature extraction

We now detail the visual front-end used during this workshop. The structure of the workshop did not permit
extensive experimentation on the visual features used. We detail one set of choices that we made for these
experiments and will detail the effect of other feature choices in a later report.

Prior work in the literature(e.g. [5]) suggest a uniform grid partitioning of the image for extracting features
from localized regions results in better performance compared to extracting features from image segments.
This could be attributed to the current state of image segmentation algorithms. We choose a uniform grid
partitioning, specifically a 50 x 50 pixels partitioning of the image. This gives us a grid with 35 regions
on a typical MPEG1 resolution keyframe. In addition, NIST provided us with reference keyframes for the
entire TRECVIDO03 corpus. While we extracted features from both the NIST supplied keyframes and all the
I-frames in the MPEG-format videos, we restricted our experiments to the keyframes.

For the Color representation, we chose the LAB space 2 moments. For each of the three channels we extract
the mean, variance, kurtosis and skewness in that region. This gives a 12-dimensional vector at each region.
We detect the edges in the keyframes using the Sobel derivative operator. This gives us an edge strength and
orientation at every pixel. These values are quantized into 64 bins (8 strength and 8 orientations) for each
of the regions. This histogram is the FEdge representation of the keyframe regions. The final visual feature
that we extracted from the keyframes represents the Texture properties of these grid regions. To estimate
this feature we transform the keyframe image into 16-levels of grey and compute 4 co-occurrence matrices
(horizontal, vertical and the two diagonals). From each of these matrices, we extract summary statistics

(namely energy, contrast, inverse difference moment and entropy). For definitions of these statistics see
Ref.[6].

5 Relating query words to the visual representation of the docu-
ment

One possibility to do joint audio-visual retrieval is to build a direct model that relates words to parts of a
picture. However, given the present state of computer vision, this is not feasible. Fortunately, TREC-VID
data has been annotated with concepts, that cover essential parts of the pictures. Hence, models will be
derived, the utilize these concepts.

5.1 Single model with concept layer

In the following, the concepts will be denoted by c. In the previous sections p(d|q) has been decomposed
into four different terms for textual and visual queries and the textual and visual parts of the documents.

2see the colorspace faq at http://www.fags.org/faqs/graphics/colorspace-faq/ for a definition of the LAB space.



One of the four terms is p(qy|d,) which we will discuss first. To use the concepts, the concept layer is
introduced, the probability is decomposed using the definition of conditional probabilities and finally, a kind
of Markov or independence assumption is made:

p(qw|dv) = ZP(chldv) (21)
= S pavled)p(eld,) (22
~ Zp(qw|0)p(0|du) (23)

Some observations:

e p(c|d,) is one of the models trained anyway only that the concept labels are used instead of the words.
e p(quw|c) can be derived from the concept tagger

e Approximating p(q,|cd,) by p(gw|c) is very crude. If the query is “Allan Greenspan” the concept will
be “face” and such a model alone (even if perfect) will then return only faces.

e The same line of reasoning can be applied to the other three components p(q.|dw), p(gv|dw) and
p(qv|dy). In each case, the result is a combination of model types already discussed elsewhere in the

paper.

5.2 Suggested use of concept layer models

As indicated above, the concept layer models can not only be used on their own but they can also provide
useful smoothing for other noisy and undertrained models. An example:

p(Qw|dv) = ADdirekt (Qw|dv) + (1 - /\)pconcept(Qw|dv) (24)
with
Pconcept (QU)|dv) - Zp(qw|c)p(c‘dv) (25)

This is a linear interpolation of a model that is trained on the data without concept labels and a model
with a concept layer: peoncept (Gw|dy). The model peoncept (qw|dy) will provide additional supporting evidence
in cases where pgirert(qw|dy) is disturbed by noise. Also it can be used to give lower weights of documents
that are missing essential information (e.g. if the query is “Give me a picture of Allan Greenspan” but the
document doesn’t show a face it should be suppressed.)

However, we have to be careful here. In traditional language modeling, a similar reasoning can be done e.g.
for the combination of trigram LMs and grammar LMs. Such a combination gives a significant improvement
however, it will not completely suppress ungrammatical sentences. For the application investigated in this
work it means that we cannot expect perfect precision on concept level e.g. suppression of pictures without
faces if we ask for a picture of a person.

Note: Instead of a linear interpolation also a log-linear combination can be used.

5.3 Machine Translation Inspired Approaches for Image Annotation

One approach to estimate the probability of the concepts given the visual features of a keyframe (p(c|d,)) is
to learn the correspondences between concepts and images. In this approach, the correspondence problem is
attacked as the translation of visual features into concepts, anologous to the statistical machine translation.



5.3.1 Motivation

In the image and video collections, the images are usually annotated with a few keywords which describe
the images. However, the correspondences between image regions and words are unknown. For example, for
an image showing a tiger on the grass, and having the annotated keywords tiger and grass, it is known
that tiger and grass are in the image, but it is not known which region is tiger and which region is grass
(Figure 3). With a single image, it is not possible to solve the correspondence problem. However, if there
were other images, where the orange stripey region (the region corresponding to tiger) was not with a green
region (which correspond to grass) but with something else (e.g. a gray region corresponding to ground, or
a blue region corresponding to water), then it would be possible to learn that tiger was corresponding to
the orange stripey region but not to the green one.

Bk

3

tiger grass cat

Figure 3: The correspondence problem between image regions and words: The words tiger and grass are
associated with the image, but the word-to-region correspondences are unknown. If there are other images,
the correct correspondences can be learned and used to automatically label each region in the image with
correct words or to auto-annotate a given image.

This correspondence problem is very similar to the correspondence problem faced in statistical machine
translation literature (Figure 4). There are some data sets known as aligned bitext, which consist of many
small blocks of text in both languages, that are known to correspond to each other at paragraph or sentence
level, but word to word correspondences are unknown. A well-known example is the “Hansard Corpus”
consisting of debates from the Canadian Parliament, where each speaker’s remarks in the country’s two
official languages -English and French-, correspond in meaning.

Brown et.al [7] suggested that it may be possible to construct automatic machine translation systems by
learning from such large datasets. Using these aligned bitexts, the problem of lexicon learning is transformed
into the problem of finding the correspondences between words of different languages, which can then be
tackled by machine learning methods.

Due to the similarity of problems, correspondence problem between image regions and concepts can be
attacked as a problem of translating visual features into words, as first proposed by Duygulu et.al. [8].
Given a set of training images, it is possible to create a probability table that associates words and visual
features which can be then used to find the corresponding words for the given test images.

5.3.2 Approach

In machine translation, a lexicon links a set of discrete objects (words in one language) onto another set
of discrete objects (words in the other language). Therefore, in order to exploit the analogy with machine
translation, both the images and the annotations need to be broken up into discrete items. The annotation
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Figure 4: Correspondence problem between image regions and concepts can be attacked as a problem of
translating visual features into words. The problem is very similar to Statistical Machine Translation. We
want to transform one form of data (image regions or English words) to another form of data (concepts or
French words).

keywords in Corel data set and the concepts in TRECVID data set can be directly used as discrete items.
For data sets, which are annotated in free text form, an appropriate language processing procedure can be
applied to reduce the free text annotation into a set of discrete items.

In order to obtain the discrete items for visual data, the images are first segmented into regions. The regions
could be obtained by a segmentation algorithm as in [8] or can be fixed sized blocks as we will use in this
study. Then, a set of features, such as color, texture, and edge, are computed to represent each region.
Finally, the regions are classified into region types (visterms) by vector quantization techniques such as
K-means.

After having the discrete items, an aligned bitext, consisting of the visterms and the words (concepts in our
case) for each image is obtained. The problem is then, to use the aligned bitext in training to construct a
probability table linking visterms with concepts.

In this study, we use the direct translation model. Brown et. al. [7] propose a set of models for statistical
machine translation. The simplest model (Model 1), assumes that all connections for each French position
are equally likely. This model is adapted to translate visterms to concepts, since there is no order relation
among the visterms or concepts in the data.

The word posterior probabilities for each visterm, supplied by the probability table, is then used to predict
concepts for the test data. In order to obtain the word posterior probabilities for the whole image, the word
posterior probabilities of the regions in the image, provided by the probability table, are marginalized as
given below:

Py(cldy) = 1/|du| D P(clv) (26)
VEd,
where v’s are the visterms in the image. Then, the word posterior probabilities are normalized. Auto-
annotation, can be performed by predicting concepts with high posterior probability given the image (Fig-
ure 5) .
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Figure 5: Auto-annotation strategy. Word posterior probabilities for the regions of the image are summed,
and normalized. Then the best n words with the highest probability are chosen to annotate the image

5.3.3 Integrating Word Cooccurrences

We incorporate the language modeling in the form of word cooccurrences, since our data sets consist of
individual concepts without any order. In our new model, the probability of a concept given an image
depends both to the probability of that concept given other concepts, and the probability of other concepts
given the image.

IC|
Pi(cildy) = Pleile;) Polcjldy) (27)

j=1

5.3.4 Experimental Results for Machine Translation Approach

Experiments are carried out both on TRECVID data set and on Corel data set. For the experiments on
TRECVID data set, color, texture and edge features are extracted from fixed sized blocks and also around
interest points which are obtained by a Harris corner detector based algorithm. The feature vectors are
separately quantized into 1000 visterms each. The vocabulary consists of 75 concepts. For the experiments
on Corel data set, each image is divided into 24 fixed sized blocks and from each region color and texture
features are extracted to form a single feature vector. These feature vectors are then vector quantized into
500 visterms using K-means algorithm. The vocabulary of training set consists of 374 words. Translation
tables are learned using Giza++, which is a part of Statistical Machine Translation toolkit developed during
summer 1999 at CLSP at Johns Hopkins University.

Figure 6 shows some auto-annotation examples using Model 1 training. Most of the words are predicted
correctly and most of the incorrect matches are due to the missing manual annotations (e.g. Although tree
is in the image on the top-left example it is not in the manual annotations.

In order to test the effect of different models we have trained our system also with more complicated models:
(i) using HMM on top of Model 1 and, (ii) Model 4 on top of Model 1 and HMM training. The experiments
show that, the simplest model (only Model 1) produces the best annotation performance. The Mean Average
Precision values obtained by Model 1 are 0.125 on Corel data set and 0.124 on TRECVID data set.

It is observed that, the number of iterations in Giza training also affects the annotation performance.
Although, annotation performance descreases with the increased number of iterations, with less iterations less
number of words can be predicted. Due to this tradeoff, number of iterations is set to 5 in the experiments.
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Figure 6: Annotation examples on Corel data set. Top: manual annotations, bottom: predicted words (top 5
words with the highest probability). Words in red color correspond to the correct matches.

Another important parameter that affects the annotation performance is the features. In the experiments
we have compared color, texture, and edge features extracted either from blocks or around interest points.
The results are shown in Figure 7. It is observed that, the performance is always better when features
are extracted from blocks. The experiments show that, color feature gives the best performence when used
individually but using a combination of all three features gives the best performence. Adding a feature
related to detected faces (number of faces) does not give any significant improvement. Feature selection
based on Information Gain is also experimented, but the results were not satisfactory.

It is shown that (Table 1) incorporating word cooccurrences into the model helps to improve annotation
performence for Corel data set, but does not create a difference for TREC data set.

Corel | TREC
Model 1 0.125 | 0.124
Model 1 with word cooccurrences | 0.145 | 0.124

Table 1: The effect of incorporating word co-occurrences

Another experiment that has been studied but not performing well was using the alignments provided by
training to construct a co-occurrence table. For this experiments we have trained Giza in both ways, i.e.
one table is created for co-occurrences by training from visterms to concepts and another one is created by
training from concepts to visterms. A third co-occurrence table is created by summing up the two tables.
As shown in Table 2, the results were worse than the base results.

Model 1 | Alignment(Visterm to Concept) | Alignment(Concept to Visterm) | Alignment (Combined)
0.125 0.103 0.107 0.114

Table 2: Comparison of the results obtained from a co-occurrence table of the alignment counts with the
basic Model 1 results.

10
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Figure 7: Comparison between block-based features and Harris interest point features.

5.3.5 Image Annotation using Cross-Lingual Information Retrieval

The image annotation problem can be viewed as the problem of Cross-Lingual Information Retrieval (CLIR).
In CLIR we have queries in a language “A” and the document collection in a language “B”. The goal is
to find the most relevant documents in language B for each query @ from language A. If we assume that
language A is the language of concepts and B is the language of visterms, the task of image annotation
becomes a CLIR problem. Suppose we would like to find for the concept ¢ the most relevant images in our
collection, we would rank each document using the following equation:

p(cldy) = a( Y plev)p(vldy)) + (1 — a)p(c|Ge), (28)

vEdy

where ¢ is a concept and dy is a image document. Since the term p(c|G¢) is the unigram probability of the
concept ¢ estimated on training data and does not depend on dy, it will be dropped and the above formula

can be rewritten as:
pleldv) = plclv)p(v]dy). (29)
VEd,y

In order to compute p(c|dy ) we need to estimate p(v|dy) and p(c|v). The probability p(v|dy) is computed
directly from the document dy. The probability p(c|v) is the probability of the concept ¢ given that the
visterm v is the document dy; this is obtained as the translation probability estimated in the machine

11



translation approach. As already mentioned each document is represented by a fixed number of visterms;

105 visterms for the TREC collection is pulled out from visterm vocabulary of size 3000. In this situation
p(v|dy ) usually turns out to be close to 3= for each visterm v € dy.

Since individual images were not able to produce a good estimate of p(v|dy ), we choose to estimate the prior
probability over the training collection in the following ways:

# of v in the collection

TFrya; =
Train (V) # of visterms in the collection

B # of documents with v
4 of documents in the collection

l)lafmnn(v)

Since document frequency (DF') outperforms the term frequency (T'F), we used DFr,q;n(v) as a estimate
of p(v). Using p(v) and restricting the sum over only the visterms in the given document, we now have a
score that is not a probability:
score(cldy) = Y DFrpain(v)p(clv) (30)
vEd,
The annotation performance of the CLIR approach in terms of mAP is 0.126 which is significantly better
than our baseline Model 1 (p=0.04).

Figure 8 compares the basic machine translation based approach with CLIR based approach using average
precision values for the top 10 words. The recall-precision performance for CLIR is given in Figure 9.
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Figure 8: Average Precision comparison between MT and CLIR based models for the top 10 concepts
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Figure 9: Recall Precision performance for the CLIR annotation model

5.4 Relevance Models for Visual Annotation

Relevance models are one approach to estimating the probabilities of annotating a keyframe with concepts
given the visual features of a keyframe. The basic idea behind relevance models is to automatically associate
words with an image by estimating the joint probabilities of words and the set of visterms obtained from a
particular image. The model requires a training set of annotated images.

5.4.1 Motivation

In an image, isolated pixels and regions are hard to interpret. The association of different image regions
provides the context of that image, which simplifies the recognition of distinct regions as specific objects.
Thus, for example, a region of black stripes over orange is more likely to be associated with the word tiger if
it seen with image regions of forest or trees than with regions of a kitchen. So the intuition is that if a model
learns the context of images well it works well on image annotation. Given annotated images, one can assume
that every image is described either by its annotations (words) or by visterms from an image vocabulary of
visterms. A relevance model is a nice way to integrate context information in images through computing
the joint probabilities of visterms associated with an image and the associated annotations (concepts in this
case).

Relevance models for images were developed in analogy with cross-lingual retrieval [9] where the idea is
retrieve documents in one language (say French) given a query in another language (say English). The
relevance model approach to this problem is to compute a relevance model which is the joint probabilities
of words in two languages for the relevant set from a training set of corpora in two languages. Here, the

13



essential idea is that every document may be represented using words from two different languages. The
relevance model may then be used to retrieve documents in French given English queries.

The first extension to images, the cross-media relevance model [5] assumed that each image may be described
using two vocabularies - an image vocabulary of visterms - and a word vocabulary for the annotations. Given
a training set of annotated images, this joint distribution of visterms and words may be learned and then
used to annotate test images which have only an image description. Discrete visterms are computed as
follows: First an image is partitioned into regions using either a segmention algorithm or a regular grid. A
feature vector is extracted for each region. K-means clustering of these regions across images creates a set
of clusters - the vocabulary of visterms.

Instead of discrete visterms, one may use a continuous version of the model where each region of the image is
represented using continuous features. A kernel density estimate is used instead of the discrete representation
as described below. Such a continuous relevance model [10] produces better results as described below.
Previous work [11] has also shown that a rectangular regular partition produces better results than using a
segmentation algorithm. Note that the training data does not provide region/word alignments. However,
the relevance model does not create such alignments either (unlike the translation model and HMM’s).
Region/word alignments are not required for retrieval.

5.4.2 Cross-media Relevance Models

The cross-media relevance model (CMRM) was introduced by Jeon, Lavrenko and Manmatha [5] for anno-
tating images. Our formulation here is based on their original formulation.
A collection of annotated images as a training set, provides the CMRM with two parallel vocabularies: the
visterm set from clustering visual features extracted from each image region and the concept words from
the human annotation. Unlike machine translation models which are based on one visterm to one word
translation for a test image, CMRM uses a probability distribution to specify how often we expect to see
any concept words relevant to the visterms from the test image. Thus CMRM implicitly integrates the
techniques of translation disambiguation and query expansion.
Given a concept ¢ and the set of visterms d,, = vy, vs, ..., v, from a test image, then we would like to compute
the probability of

P(c|ldy) = P(clvy,va, ..., vn) (31)

The conditional probability can be computed if we know the joint distribution P(c,d,) because

_ P(C,’Ul,vg,...,’l}n)
Yoo Plc,v1,v9, .., 0p)

Let 7 be the training set then the joint probability of any concept ¢ and the set of visterms d,, = vy, va, ..., Uy
from a test image could be computed as an expectation over the images J € 7:

P(clvy,va, ..., vp) (32)

P(c,dy) =Y P(J)P(c,01,v, ..., v3]J) (33)
Jer

Given a training image J, we may assume that ¢ and vy, vs,...,v3 are mutually independent. So we can
rewrite the equation (33) as:

P(c,dy) =Y _ P(J)P(c[]) ] P(vilJ) (34)

JeT V; Ed,y

The prior probabilities P(J) for all the training images J are kept uniform over the training set 7. Maximum-
likelihood estimates are used for the probabilities of concept and each visterm generated from the training
image, and the estimates are smoothed with the collection frequencies.

14



P(e|]) = (1 - ay) “(fj]‘] i aﬁ(f;f) (35)
Plols) = (1= ) A0 4 g, ) (36)

where «a; and §; are smoothing parameters for concepts and visterms respectively, and are selected empir-
ically on a held-out portion of the training set 7. Annotation involves computing the probabilities for each
concept.

5.4.3 Continuous Relevance Models

The continuous relevance model(CRM) is a continuous version of the cross-media relevance model. This
model also relies on a training set of annotated images and operates as follows. First, we partition each
training image into regions using an unsupervised segmentation algorithm[12] or using rectangular partitions.
Then, we compute a real-valued feature vector for each region. The features reflect the relative position of
a region in the image, its shape, color and texture. As a result, each training image is represented as a
set of feature vectors V = {v;...v,} along with a set of concept words C = {c;...c;,}. As a final step, we
construct a joint probability distribution P(V,C) over the concept words C and image features V. This joint
distribution allows us to find the most likely annotations for new unlabelled images by searching for concept
words C that maximize the conditional probability P(C|V)=P(C,V)/P(V).

Given a test image J represented as d,,, CRM computes the probability P(c,d,), just like CMRM (equation
(33) and equation (34)), as a joint expectation over the space of distributions P(:|.J) defined by annotated
images J the training set 7. So both CRM and CMRM rely directly on individual images in the training
set, allowing the data to speak for itself and avoiding making a-priori assumptions about the structure of
the space. Both of them are doubly non-parametric statistical models.

Nevertheless, CRM directly models and takes advantages of continuous features. First, it doesn’t suffer from
any of the usual difficulties with clustering, such as the cluster granularity and clustering errors. Second,
continuous features give a more expressive representation of an image. Using a Gaussian kernel instead of
clustering to formulate the similarity of features avoids the hard decision on features’ categories. These
significant differences between CRM and CMRM lead to substantial improvements in performance of CRM
over CMRM.

Now let v4 = {v1...v,,} denote the feature vectors of some image A, which is not in the training set 7.
Similarly, let ¢p be some arbitrary subset of concept vocabulary C. We would like to model P(v 4,cp), the
joint probability of observing an image defined by v 4 together with annotation concepts cg. We hypothesize
that the observation {v 4, cp} came from the same process that generated one of the images J* in the training
set 7. However, we don’t know which process that was, and so we compute an expectation over all images
Jert. The overall process for jointly generating cp and v 4 is as follows:

1. Pick a training image J&7 with probability P(J)
2. Sample cp from a multinomial model P(-|.J).
3. Fora=1...n4:
(a) Sample a generator vector v, from the probability density P(:|J).

Figure 10 shows a graphical dependency diagram for the generative process outlined above. We show the
process of generating a simple image consisting of three regions and a corresponding 3-word annotation.
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Figure 10: CRM as a process for generating annotated images. First, pick a training image J. Then, sample
the annotation words c;. . .c, from the multinomial distribution P(c|J). Finally, sample image regions v;. . v,
from the density function P(v|J)

Note that the number of words in the annotation np does not have to be the same as the number of image
regions n4.
As CMRM, CRM computes the concept probability P(c|J) of equation (34) using a maximum likelihood
approach smoothed over the training set 7:

N,

Nc,J J
Plel) = A5+ (1= N (37)

Here N, ; is the number of times ¢ occurred in the annotation of J, N; is the length of annotation, V.
is the total number of times ¢ occurred in the training set, and N is the aggregate length of all training
annotations. A denotes a parameter that controls the degree of smoothing.

CRM models the visterm (which is now a real-valued feature vector) component P(v|J) using a density
function responsible for modelling the d-dimensional feature vectors {v;...v, , }, which are computed from
the rectangular regions of each image. We use a non-parametric kernel-based density estimate for the
distribution P(v|J). Let v; = {v1...v,} be the set of regions of image J. We estimate the probability
density for a new vector v as:

P(ol) = 1 zn: exp {(v —v)) T v — in))}

n = V/24md|3|

Equation (38) arises out of placing a Gaussian kernel over the feature vector v ;i of every region of image J.
Each kernel is parameterized by the feature covariance matrix . As a matter of convenience we assumed
3 = -1, where I is the identity matrix. 3 plays the role of kernel bandwidth: it determines the smoothness
of P(v|J) around the support points v;. The value of 3 is selected empirically on a held-out portion of the
training set 7.

(38)

5.4.4 Normalized Continuous Relevance Models

One assumption of CRM is the multinomial word distribution, which make the model ill-suited for im-
age/video annotation. CRM assumes that annotation words for any given image follow a multinomial
distribution. This is not too unreasonable an assumption in the Corel dataset, where all annotations are ap-
proximately equal in length and words reflect the prominence of objects in the image. However, in our video
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datasets individual frames have hierarchical annotations which do not follow the multinomial distribution.
The length of the annotations also varies widely for different video frames. Furthermore, video annotations
focus on the presence of an object in a frame, rather than its prominence.

The multinomial model is meant to reflect the prominence of words in a given annotation. The event space of
the model is the set of all strings over a given vocabulary, and consequently words can appear multiple times
in the annotation. In addition, the probability mass is shared by all words in the vocabulary, and during the
estimation process the words compete for this probability mass. As a result, an image [; annotated with a
single word “face” will assign all probability mass to that word, so P(face|l;) = 1. If some other image I5 is
annotated with ten different words, one of which is “face”, we get P(face|ls) = 1—10. Arguably, both images
contain “face” in their annotations, so the probabilities should not differ by an order of magnitude.

We can modify the assumption by using a normalized continuous relevance model(Normalized-CRM) [13],
which bears the same mathematical framework with CRM except for using a normalized multinomial for
word distributions. The normalized CRM first expands all annotations to a fixed length N* =max;{N;},
where N is the annotation length of image J. This is accomplished by adding (N*— N;) instances of a
special “null” word to the annotation of image J. The word probabilities are estimated using equation (37).
The normalized-CRM may be shown to be equivalent to multiple-Bernoulli Relevance Model(MBRM) for
annotation performance [11, 14], which uses a multiple-Bernoulli distribution for the concept word probabil-
ities.

5.4.5 Experimental Results for Relevance Models

On the alternative dataset-Corel set, we tested all these three kinds of Relevance models: CMRM, CRM and
normalized-CRM, and compare their annotation performance. We partition each image in this collection
into 24 rectangles and extract visual features (color and texture) from each rectangular region as a visterm.
For CMRM, we first classify all the visual features into 500 categories using K-means as visterms. Since
K-means uses randomly selected sample points as the initial category centers and cannot guarantee a global
optimum, we try the CMRM on different sets of visterms from separate K-means runs to see the effects of
the clustering on the model. The results show that even with the same number of categories the clustering
does affect the CMRM’s performance.

Table 3 show the annotation performance of CMRM, CRM and Normalized-CRM on the Corel dataset.
Normalized-CRM works best.

Models CMRM | CRM | Normalized-CRM
Mean Average Precision 0.14 0.23 0.26

Table 3: Performance comparison of annotation on the Corel dataset

Figure 11 shows some automatic annotation examples for the normalized-CRM on the Corel dataset. Note
that normalized-CRM correctly predicates most annotation words for these images, even those missed by
human annotation, e.g. "water" for the first image, ’tree’ for the second image but also makes some mistakes.
For the TRECVID2003, we tested normalized-CRM on the development dataset. The feature set we used
only includes color and texture for the sake of computation expenditure since our comparison experiments
on a relative smaller set show adding edge features only gives very slight improvement — only 0.01 for the
mean average precision. The model’s parameters, including the bandwidth for the Gaussian kernel and the
smoothing parameter for concept probabilities, are selected by holding out a portion of the training set
for validation. The mean average precision obtained by normalized-CRM over the development dataset for
annotation is 0.158.
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sky train railroad loco- | cat tiger bengal tree for- | snow fox arctic tails wa-
motive water est ters

*

tree plane zebra herd wa- | birds leaf nest water sky mountain plane jet water
ter sky

Figure 11: Top automatic annotations produced by the normalized-CRM models. The bold words are those
that appear in the human annotation for that image

Figure 12 shows the comparison of the recall-precision graphs from normalized-CRM and model 1 of the IBM
translation model. The normalized-CRM is substantially better than the translation model for low recall.

5.4.6 Related Relevance Models

Intuition All our relevance models in the previous sections make an assumption that the visterms are
independent of the concepts given the image, i.e. P(v|J,c¢) = P(v|J) noting the equation 34. This is a
direct analogy with unigrams in text retrieval (bigrams have not shown any significant improvement over
unigrams in in text retrieval). One can try more complex models which make the visterms depend on the
concepts. However, as the models below show the performance is worse. For example, one can rewrite
equation 34 as:

P(c,dy) =Y P()P(cl]) T] P(uilJ.e) (39)

Jer Vi Edy

To formulate the P(v|J, ¢), we tried different ideas.

Idea One Approximate the P(v|J,c) with P(v|c), which is computed from the translation models. Now

the model become:
P(c,dy) =Y _ P()P(c|]) ] P(vile) (40)
Jer V; Edy

In this case the relevance model reduces to a translation model plus a language model, because in equation
(40), [1,,cq, P(vilc) is unrelated to the image J and thus plays the role of a translation model, and the rest
of the equation plays the role of a language model. To make this more explicit, we may rewrite it as:

P(c,d,) = ] Pile) Y  P(J)P(c|J) (41)

Vi Ed, Jer
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Figure 12: The comparison of the recall-precision graphs from normalized-CRM and translation models
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Idea Two Use a linear combination of P(v|J) and P(v|c) to approximate P(v|J, c), i.e. P(v|J,c) =

P(v|J) + (1 — X\)P(v|c), where A is a parameter determining the weights of the combination, P(v|J) is
calculated with a Gaussian kernel as in equation (38) and P(v|c) using the results from the translation
model. So the model becomes:

=Y P()P(cl]) T APwild) + (1 = N P(vilc)) (42)
Jer v; Edy

Note that, v; are in different status in P(v;|J) and P(v;|c): v; are real-valued visterm features in P(v;|J)
while they are discrete visterms in P(v;c).

Idea Three In equation ( 38), each Gaussian kernel function essentially formulates the probability of the
test visterm v given each visterm vy; of the image J. So we can write equation 38 as:

_ L > Plvles) (43)

3

where n is the number of visterms in the image J.
After adding the independence on concepts, we have:

(v]J; ¢) ZP ologi.c) "
To compute P(v|vy;,c), we use Bayes’ rule:
P(lvsi,c) = lm
- WP(“%) o)

We use co-occurrence tables to compute P(c|v,vy;) and P(c|vy;):

#(c,v,v;)

P(C|’U7’UJZ') = m (46)
Pclvy:) W (47)

where (¢, v,vy;), #(v,v;) and vy; are the counts of (¢, v,vy;),(v,v;),v7; in the training set respectively, and
v,vy; are discrete visterms.

For P(v|vy;) we still use the Gaussian kernel, so here v and v;; are real-valued visterms.

Now the model becomes:

= > PP T 3P by ) (49)

Jer vi€d, =1 P(clvsi)

5.4.7 Experimental Results and Analysis

We implemented these three models and tested them on the Corel dataset. Unfortunately, none of these
models outperform the previous relevance models. Although the reasons are not completely clear, it is
possible that either we do not have enough data to estimate these dependencies accurately or like in text
retrieval, unigrams perform better on this task (given that the HMM’s performed better when the transition
probabilities were uniform, it is likely that the latter reason may hold).
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Unconnected Model

Standard Model p(ey) = ﬁ

One-Dimensional Model
Standard Chain Model pler) = plegei—1)
Two-Dimensional Model

p(ee) = plet|ei—1,¢—s,) Vst t mod Sp >0At—Sgp >0
p(er) = plet|ei—1) Vist t mod Sg >0At—Sp<0
p(et) = pletlei—sp) VEstt mod SR=0At—Sr >0
pler) =p(e) Vistt mod Sp=0At—Sg <0

Full Dependence Model

Table 4: Probability Formulae

5.5 Dynamic Bayesian Networks and Hidden Markov Models for Image Anno-
tation

Graphical models were another approach we used to find p(c|d,). Graphical models offer a greater freedom
to express dependencies between concepts. First order HMM’s allow the current concept to only depend
on the previous concept. Graphical models allow the two dimensional spatial information in images to be
captured. We chose to use Dynamic Baysian Networks (DBNs) as our graphical models. GMTK?® was used
to build the DBNs.

5.5.1 Concept Transition Models

5.5.2 Unconnected Model

O OO0 OO0
O OO0 OO0
OO 00 0O
OO 00 0O

Figure 13: Unconnected Model

The unconnected model is the simplest model we have used. Figure 13 depicts the essence of this model.*
Each visterm is generated by a single concept. Each concept is generated independently with fixed proba-
bilities.?

There are several obvious deficiencies in this model. It ignores the spacial organization of the image entirely.
It has no way to discover that sky is often a large region of the image while tiger is often confined to

3http://ssli.ee.washington.edu/~bilmes/gmtk/

4See Appendix 26 for the full depiction of the model

5These probabilities are fixed to be uniform during training. During decoding, they are fixed either to be uniform or according
to a language model specified externally.
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a smaller region of the image. The subsequent models attempt to address these problems by introducing
dependencies between the generation of concepts.

5.6 One-Dimensional Models

0+0+0-0~0=0
O*T-0-0~0=0
O*5-0+0=0=0
OFT~O~0O-0~0

Figure 14: Chain Model

The chain model has the generation of each concept depend on the concept to the left of it. Figure 14 has an
overview of this model. This model imagines that the image blocks are ordered according to a left to right
raster scan of the image and that the concepts generating the blocks are an order 1 Markov chain. This
model should capture a notion of width. Concepts like sky, which often run from one edge of an image to
the other, should have a high probability of generating another sky given the current block is sky. Concepts
like tiger or lichen should have a lower probability of generating themselves given they are the concept
for the current block. It may also be able to capture things like tiger is usually to the right of grass but
not usually to the right of sky even though both tiger and sky often appear in the same image.

This model has attempted to correct for one deficiency of the unconnected model: modeling the size of
concepts. It introduces a false dependency in this process. The concept of the left-most block of a row of an
image depends on the concept of the right-most of the previous row. Such a dependency is likely undesirable.
The model in section 5.6.1 fixes this problem. The simple chain model also fails to take into account any
vertical organization an image may have. The models in section 5.6.1 have different approaches to modeling
this dependency.

5.6.1 Two-Dimensional Models

—> —>
—> —>
—> —>

—

Figure 15: Full Dependence Model

Two-dimensional models attempt to capture the vertical as well as horizontal organization of images. Instead
of depending solely on the concept to the left, both the concept to the left and above are used to decide the
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concept of a block. These models form a structure like a grid (see figure 15). These models should be able
to capture notions like if there is sky above and sky to the left, this concept should be sky or if grass is
above and tiger is to the left, then this concept is probably grass or tiger and certainly not sky.

5.6.2 Full Dependence Approach

The straight-forward method of modeling these dependencies is to fully model the horizontal and vertical
dependencies of a concept.® This model suffers from data sparsity problems in estimating the concept
transition probabilities, the space of transitions has gone from |C|? to |C|>. Gradual training offers one
solution to this problem. Initially, a small number of different distributions must be modeled. As more
distributions are added, they are initialized with the distribution of the group to which they previously
belonged. If few examples for a group of transitions are seen, their distribution could remain unchanged.
This would allow a full modeling of common situations, like sky above and to the left while not forcing the
re-estimation of 1ichen above and canoe left.

5.6.3 Training

Figure 16: Only Allow Annotation Concepts

Only Allow Annotation Concepts One approach to training is to only allow the concepts annotated
by a human to be assigned to regions in the image. For example, if an image had labels sky, tiger, and
grass, then the model could decide that all image regions were generated by the concept tiger. Figure 16
shows how this was implemented. p(M; = 1) =1 if C; € {sky, tiger, grass} and p(M; =1) =0 otherwise.

5.6.4 Force Annotation Concepts to Contribute

The other approach to training is to require each of the annotated concepts to be used at least once. For
example, if an image had labels sky, tiger, and grass, then the model could not assign tiger to generate
all concepts, but could assign sky to one region, tiger to one region, grass to one region, and ground to
the rest of the regions. Figure 17 shows how this was implemented. In this figure, M} = M} | vV C; = sky,
M? =M%,V C; = tiger, and M? = M? , vV C; = grass. The models trained this way took a great deal
longer to train than the other method.

6See Table 4 for the specific formula.
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Figure 17: Force Annotation Concepts to Contribute

5.6.5 Decoding

Methods for Decoding The first approach to decoding an image we tried was to use the conditional
probability of concept given image blocks (p(c|V')). We calculated this by first computing the probability of
the image blocks (p(V')) by calculating the sum of the probabilities of all possible concept sequences for the
image blocks. The joint probability of a specific concept and the image blocks is next calculated (p(c,V)).
We defined p(c, V') to be the sum of the probabilities of all concept sequences for the image blocks where ¢
appears in the sequence at least once. p(c|V) is gotten by dividing p(c, V') by p(V). We refer to this process
as forward pass decoding.

A modified approach to decoding uses maxes where sums are used in forward pass decoding. We call this
approach viterbi pass decoding. This approach has yielded the best results to this point.

5.6.6 Concept Transition Probabilities

A separate issue in decoding is how the concept transition probabilities are defined. The first approach is
to use the probabilities as learnt during training. There may be a danger of these transition probabilities
overfitting during training. If the demand annotation scheme (section 5.6.3) is used during training, there is
nothing to force concepts to appear, perhaps causing a skew towards very frequent concepts during decoding.
A solution to this problem is to use a language model derived from a different method during decoding. One
approach is to create a concept cooccurrence matrix from the labeled concepts in the training data. Once
normalized, this cooccurrence matrix can be used in place of the concept transition probabilities learned by
the model. This method appears to give the best results to this point.

5.6.7 Adjustment to p(c|d,)

It is possible that p(c|d,) will be 1 for more than 1 ¢. In that case, it is not clear how to break ties. The
method we chose was to order the concepts by p(c|d,).

5.6.8 DBN Results

Overall, the results thus far for graphical models are disappointing. We were not able to match the per-
formance of the HMM’s. Examining only the results within the graphical model framework, the results
suggest that greater information is useful. The difference between .086 and .071 has a p-value of .051.

24



Forward Pass Cooccurrence | Adjustment | Training
or Viterbi Language Model | to p(c|d,) | Iterations | mAP
F N N 20 .068
F N Y 20 .068
F Y N 20 | .040
F Y Y 20 | .040
A% N N 20 | 071
A% N Y 20 .069
A% Y N 20 .067
A% Y Y 20 | .067

Table 5: Unconnected Model Results

Two-dimensional model results were not available. One trend appears to be that the viterbi decoding works
better than the forward pass decoding.

5.6.9 HMM experiments

Experiments with the HMM models were carried out using the HTK toolkit [15]. During the training, a
separate model is constructed for each training image (frame). The model is fully connected, with states
determined by words (concepts) present in the manual annotations. Individual image blocks are then treated
as if they were "generated" by those annotation concepts. An alignment between image blocks and annotation
concepts represents a hidden variable, the models are trained using the EM algorithm. The output probability
distribution p(d,|c) for a particular concept ¢ is shared across all training images - thus all image blocks
from the training set depicting tiger contribute to a single probability distribution. A single multivariate
Gaussian is used to model the output probability distributions in the baseline system.

The probability of transitions between states was fixed to be uniform during the training. This approach
corresponds to the unconnected model described in Section 5.5.2. Even though EM algorithms obviously
allows to train also the transition probabilities (which would lead to chain model presented in Section 5.6),
we have decided to fix the transition probabilities. The reason was that we wanted to fully explore the power
of the visual features themselves, without the effects of the linear dependency (which is anyway slightly
questionable, see the picture in Section 5.6). The implementation of two-dimensional models would be also
possible, but really complex in the HTK framework.

Once the output distributions are trained, a new fully connected HMM is constructed from all the individual
states corresponding to vocabulary concepts and this model is used for the decoding. There are two basic
types of the decoding models - first of them has a uniform transition probabilities and the second derives
the transition probabilities from the concept co-occurrence language model. We have tested both Viterbi
and forward pass decoding (see Section 5.6.5) but, unlike in the GMTK implementation, we have found the
forward pass approach to perform better and thus all results reported in this section come from the forward
pass decoding.

Having implemented this basic training and decoding setup, we also looked at the quality of the automatic
alignment between concepts and image regions during the training. Since there no notion of order in the
annotation concepts (the fact that the word tiger is listed first does not mean that the tiger appears in the
upper left corner), learning of the proper alignment is often hard for the EM algorithm.

We tried to improve the alignment by introducing a gradual training scenario. First, we identify a set
of concepts that often constitute an image background (sky, grass, water, ...). Then we allow only those
“background” states to have their individual emission probability distributions in the initial stages of HMM
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Forward Pass Cooccurrence | Adjustment | Training
or Viterbi Language Model | to p(c|d,) | Iterations | mAP
F N N 20 | .031
F N Y 20 .053
F Y N 20 | .048
F Y Y 20 | .060
A% N N 20 | .066
A% N Y 20 .073
A% Y N 20 | .086
A% Y Y 20 | .086
F N N 15| .034
F N Y 15 .055
F Y N 15| .034
F Y Y 15 | .034
A% N N 15 | .068
A% N Y 15 .074
A% Y N 15 .030
A% Y Y 15 .030

Table 6: Standard Chain Model Using DIscrete Visterms Results

training (all other objects share a single “foreground” distribution). After several EM iterations, we start to
gradually untie the “foreground” distribution while running more training iterations.

Although this gradual approach subjectively improved the quality of the alignment, it did not provide a
significant gain in terms of the annotation performance.

In another attempt to improve the system performance, we forced the models to visit every state during
the training (that is, each annotation concept has to be responsible for at least one image block). This
led to huge models and consequently it considerably slowed the training procedure, but the difference in
performance was only marginal.

The amount of training data available for individual training concepts of course differs substantially. For
some concepts it is possible to train the output probability distributions with many Gaussian mixture
components whereas for other concepts we have hardly enough data to train a single Gaussian mixture.
Thus we implemented a training procedure that gradually adds mixture components during the training
according to the number of occurrences of individual concepts in the manual annotations. This approach
yielded a significant improvement of the annotation performance.

Results in terms of mean average precision (mAP) for both Corel and TRECVID data sets are summarized
in tables 8 and 9, respectively. All reported results were achieved using one of the simplest training scenarios
- that is, neither the gradual untying strategy nor the approach that forces the models to visit every state
during the training was used. Note that the Corel database served as a “development” set and therefore we
performed more experiments on this data set. Comparison of the Recall-Precision performance of the HMM
models with Relevance Models and Machine Translation models is presented in Figure 18. We note here that
the input features used for the Machine Translation models and the Relevance models started with the raw
features as described earlier in section 4. HMMs trained on this feature did not perform well and the results
obtained were close to chance performance. The results presented here are based upon the decorrelated and
variance normalized feature set. Noting the improvements to the HMM performance using this feature set,
after the workshop we experimented with these features on the MT and RM models. The MT models did
not produce a significant change in performance. However, using a small subset of the decorrelated feature
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Forward Pass Cooccurrence | Adjustment | Training
or Viterbi Language Model | to p(c|d,) | Iterations | mAP
F N N 20 .030
F N Y 20 .069
F Y N 20 | .047
F Y Y 20 | .047
A% N N 20 | .038
A% N Y 20 | .074
A% Y N 20 .045
A% Y Y 20 .045

Table 7: Standard Chain Model Using Continuous Visterms Results

set, we notice significant improvements to the Relevance Models”. The Recall-Precision graph documenting
this experiment is shown in Figure 19.

Max. number | Language | mAP
of mixtures Model
1 N 0.140
2 N 0.157
4 N 0.157
6 N 0.154
8 N 0.161
10 N 0.161
12 N 0.161
16 N 0.164
20 N 0.161
30 N 0.160
50 N 0.162
1 Y 0.155
50 Y 0.173

Table 8: Annotation performance - Corel

6 Relating query visuals to the words in the document

6.1 The Language Model Based Classifier for Concept Annotation

The language model (LM) based classifier trains two language models on the training data. One on the set
where the concept is present and the other one on the part of the data where the concept is absent. During
testing, both language models are used to calculate perplexity on the test data. The one which gives the
smaller preplexity determines the concept assigned to the test data. In principle this is a variant of a Bayes

"Relevance Models could not be attempted with the complete decorrelated and variance normalized feature set because of
computational limitations.
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Max. number | Language | mAP
of mixtures Model

1 N 0.094

12 N 0.145

100 N 0.142

Table 9: Annotation performance - TRECVID

classifier. Formally that corresponds to

argmaxcecpwesentCabsent H P(fl ‘C)P<C)’Y (49)
i

where f; are the feature from the test set and « corresponds to the “Language Model Factor” in speech
recognition. The probabilities of the language models are smoothed using absolute discounting;:

N(fi,c)—d dR

P(fz|c> = max( N(C) ’ )+ N(C)

(50)

with R =}, v(4,.c)>0 1 and d the discounting parameter. Note that P(c) does not need any smoothing.

6.2 Concept Annotation of TRECVID

In this section we will give a couple of statistical properties of concepts that help to build suitable models.
Fig. 20 shows the relative frequency of the 75 concepts used in this study. The concepts are sorted by their
frequency. Note that only the y-axis is logarithmic and that the data is best fitted by an exponential.

The models introduced in the previous sub-section create some kind of bottleneck. Fig. 20 helps to get an
impression of the width of the bottleneck. Naively, one might think, that the number of concepts (here:
75) determines the information that can be passed from the visual to the textual models. However, a closer
inspection of the plot shows, that only a few concepts contribute significantly. The self preplexity is 29.7.
This is still a relatively high value. Given the fact that each shot has on average 3.8 annotations (from the
list of 75!) the set of annotations can still give a relatively accurate account of the content of the image.
An other essential measure on the concepts is the temporal auto-correlation function. This shows how likely
it is, that the next shot will have the same annotation given that the present shot has a certain annotation.
Fig. 21 gives the auto-correlation function for the two concepts “text-overlay” and “face”. Note that the
decay is relatively rapid. This is the consequence of the definition of a shot: a relatively strong change in the
content of the pictures. This makes concepts short-lived. A consequence of this is that models for concept
annotation will only get a weak hint by knowing the annotation of the previous shot. Note, that the concept
“monologue” is an exception.

7 Concepts from ASR

Before actually using the various classifiers, we played around with the data. Fig. 22 shows the mean
average precision for the five most frequent concepts. It is interesting to observe, that for text_overlay and
non-studio_setting the window size of £5 shots is probably still too small. On the other hand for face
the important information for classifying that concept can only found in the present shot and its immediate
neighbors.
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Figure 18: Comparison of the HMM models with Relevance Models and Translation Models for image
annotation

Chance | LM SVM | Naive Bayes | Max Ent
mAP | 0.05 0.125 | 0.116 | 0.102 0.1

Table 10: Comparison of the different methods to extract concepts from ASR

We also investigated mutual information as a means to extract features. In Fig. 23 we show the mAP for
the most frequent five concepts for an increasing number of features. We can see that the optimal number of
features depends on the concepts. Most striking is the difference between indoors and outdoors. indoors
needs a very small number of features with an optimum below 1000 features, whereas for outdoors ten times
as many features are necessary. However, the overall influence of feature selection is negligible.

8 Information Retrieval Experiments

8.1 Setup

8.2 Experiments

In Fig. 24 we compare linear with log-linear interpolation as a method to combine the different models. Here
a combination of the baseline model with the machine translation model for concept annotation is done first.
The difference between the two methods is surprisingly large. Usually in language modeling, we observe that
log-linear interpolation is better than linear interpolation but the difference is never as large as in this figure.
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Figure 19: Recall Precision graph demonstrating the improvements to the Relevance Models using the
decorrelated, variance normalized feature set

It is striking, that there is no interpolation weight where linear interpolation gives a benefit. This may be
due to the fact that we have a problem in converting our concept annotation models into proper retrieval
probabilities with a reasonable distribution of the probabilities in the interval [0 : 1].

An indication in the same direction is the fact, that the HMMs gave a comparable improvement but the
optimal weights of the combination where in a completely different range.

In Tab. 11 we give the results of the fusion experiments. First the models extracting concepts from images
where added. It turned out, that we could not turn optimal performance in concept annotation into good
performance in retrieval. Instead in the combination experiment, the machine translation approach turned
out to give best performance in combination. By throwing in the concept annotation models from ASR, an
additional improvement was achieved.

Model Retrieval mAP
Baseline 0.131
+ MT 0.139
+ Concepts from ASR | 0.149

Table 11: Results from fusing the different models

Finally Fig. 25 gives the recall-precision curve of the overall best model, a combination of the baseline with
the machine translation model for image annotation and the model that extracts concepts from ASR. We
observe that we get a consistent improvement in the high-precision region.
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Figure 20: Relative frequency of the 75 concepts sorted by their frequency

9 Summary and Future Work

In this workshop, we investigated a novel approach for multimedia retrieval which jointly models the visual
and textual components of a video shot. We built automatic multimedia retrieval systems using this approach.
Experiments were conducted on the TRECVIDO03 corpus and initial results indicate that we get a 14%
improvement in retrieval performance using joint models over a text-only baseline.

In particular, we investigated three distinct approaches for relating the visual part of the document to
the text part of the query, namely Machine Translation, Relevance Models and Graphical Models. All
three approaches were modeled as an information-bottleneck approach. We find that the Relevance Models
provide the best performance compared with MT models and Graphical Models. For MT models, direct
translation approach works best. HMM based approach that we investigated was started at the workshop
and in the short duration, this approach emerged competitive to the more established approaches of Maching
Translation models and Relevance models. To relate the visual part of the query to the ASR text of the video
shot, we investigated several approaches for extracting visual concepts from ASR text, including MaxEnt
models, Naive Bayes models and unigram count based models. These approaches indicate that predicting
visual concepts from ASR, while a challenging and counter-intuitive task, does appear possible and perhaps
even competitive to visual-only approaches. However, it is not clear what is the upper-limit on performance
of such an approach.

Some of the challenges that we faced at the workshop included incomplete labeling of images (i.e. only a
few concepts were marked in the images and not all the ones that were present). Also, these annotations
were conducted by a large group of people (see NIST TRECVID common annotation forum) and the quality
varied significantly between annotators. We did not exploit any spatial or temporal dependencies in our
experiments. This needs to be better explored in future work. Also, expanding the size of the bottleneck
and perhaps direct modeling of queries and documents needs to be explored. In our experiments, very little
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Figure 21: Autocorrelation function for Face and Text-Overlay concepts

query dependent processing was attempted. We note from literature that such techniques have worked well
for several IR tasks. This is an important future direction for further performance improvements. One of the
streams of information that we did not exploit in these experiments include on-screen text. Our assessment
indicated that this information is very relevant for many queries. However, off-the-shelf OCR programs
perform poorly on such images and produce significantly degraded text. If the quality of video OCR output
can be improved, this source of information will become quite useful and can be easily integrated into the
approaches that we developed here.
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A Detailed DBN Models

A.1 Unconnected

2 3
Window in shots

Figure 26 shows the actual structure used to construct the unconnected model.

1
P\Cs) = 747
(cs) ]

1
p(CO|Cs)*@

1

p(Ct\Ct—l) = @

1if ¢; € Annotations
0 otherwise

plwt=1)=1
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Figure 23: Feature selection for the five most frequent concepts

A.2 Chain

Figure 26 shows the actual structure used to construct the chain model. It is the same structure as the
unconnected model; what differs is what the probabilities are.

A.3 Grid

p(cs) = empirical unigram probabilities of ¢,
p(coles) = empirical bigram probabilities of ¢;|e;—1
p(ct|ci—1) = empirical bigram probabilities of ¢;|c;—1

p(fe=1)={

1if ¢; € Annotations
0 otherwise

plwt=1)=1

Figure 27 shows the structure of the grid connected model. This model captures horizontal and vertical
dependencies using left-connected and top-connected nodes. Compared with the previous chain model, the
state space goes as N° (as opposed to N?).
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