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Abstract. A novel method is introduced for automatic annotation of images with
keywords from a generic vocabulary of concepts or objects for the purpose of
content-based image retrieval. An image, represented as sequence of feature-
vectors characterizing low-level visual features such as color, texture or oriented-
edges, is modeled as having been stochastically generated by a hidden Markov
model, whose states represent concepts. The parameters of the model are esti-
mated from a set of manually annotated training-images. Each image in a large
test-collection is then automatically labeled with the a posteriori probability of
concepts present in it. This annotation supports content-based search of the test-
collection via keywords. Various aspects of model parameterization, parameter
estimation, and image annotation are dicussed, and empirical retrieval results are
presented on the COREL and TRECVID data-sets. Comparisons are made with
two other recently developed techniques on the same data-sets.

1 Introduction

The content of communications in the digital age is increasingly multi-modal in na-
ture, with text, images and even speech or video being used in a single “document.”
Content-based indexing and retrieval of multimedia is therefore becoming an increas-
ingly important issue. Unlike text retrieval, where the modality in which the user usually
specifies her information need is the same as the modality of the search collection, there
is relatively little work in image retrieval based on textual queries. The major reason, of
course, is that open domain image understanding remains a largely unsolved problem,
and even detecting a single predetermined object in an image, such as a human face, is
a fairly difficult problem (cf e.g. [1]). Important progress has been made in the last few
years in content-based image retrieval, as reported by [2–5] and others.

We are not the first to observe that while the “pure” image understanding problem,
i.e. the problem of recognizing all the objects in a given image, is very difficult due
to several invariance issues, there are two aspects of the image indexing and retrieval
problem which make it relatively more tractable. One is the availability of side informa-
tion in the accompanying text: images in multimedia documents are often accompanied
by descriptive text that a model may use to learn the content of an image. The other is
that the search problem is fairly tolerant of weak inferences on individual images: the
system need not recognize with high probability that a particular image in a collection



contains, say, a tiger; it suffices if the likelihood assigned to tiger in images containing
tigers is merely higher than it is in images not containing tigers, no matter how small
either likelihood is. The images only need to be rank-ordered correctly.

We therefore develop a joint stochastic model for images and their accompanying
captions, whose parameters can be estimated from a manually annotated (training) col-
lection of image+caption pairs. We measure the efficacy of this model by annotating a
(test) collection of images using the words seen in captions of the training images, and
performing image retrieval experiments using textual queries. We report performance
metrics for ranked retrieval standardized by the information retrieval community.

This paper is organized as follows. Section 2 formally describes the hidden Markov
model (HMM) used for image annotation, and compares it with two other recently
developed techniques for the same task. Section 3 delves into some issues in the design
and parameter estimation for the model. Section 4 presents a series of experimental
results on two image-collections, namely the COREL and the TRECVID data-sets. We
conclude with some short remarks in Section 5.

2 Hidden Markov Models for Image Annotation

Let a collection
���������
	��

of image+caption pairs be given. Let
������ � ���������������

denote
image-segments (image-regions), and

������ � ���������������
denote the objects (concepts)

present in that image, as specified by the label (caption). The � segments may be object
based, with each region corresponding to one semantically distinct object, or they may
be a simple rectangular partition of the image into fixed-size blocks. For each image-
region

� �
, !�"$# ��������� � , let % �'&)( *,+

represent color, texture, edges, shape and other
salient visual features of the region. Finally, let - denote the total vocabulary of the
caption-words

��.
across the entire collection of images.

We propose to model the
� % �/�

-sequence as a hidden Markov process [6], gener-
ated by an underlying unobserved Markov chain

�10 � �
whose states take values in

�
.

Specifically, given the states
0 �

, each % �
is generated according to a probability density

function 2 ��354 0 � 	
, and

�60 � �
itself is a Markov chain with a known initial state

067
and

transition probabilities 8 �90 � 4 0 � : � 	 . Figure 1 illustrates an image with �;"=<1> rectan-
gular regions with the caption

�
horse, foal, fence

�
, and the state-diagram of the

underlying Markov chain that generates these regions. Formally, the joint likelihood of
a state-sequence

0 � � ?�10 � ����������0 � �
&@� �
and features % �

� �� % � ��������� % ���
is

2 � % �
� �A0 � � 4 0 7 	 "B2 � % � ��������� % � ��0 � ����������0 � 4 0 7 	 "

�C�ED � 2 � % ��4 0���	 8 �F0���4 0�� : � 	��
Note that knowing the state sequence

0 �
is equivalent to being given the alignment of

each image-region
���

with one of the words in the caption. Since this level of detail is
generally not provided in captions, a hidden Markov model (HMM) may be used for
computing the joint likelihood of an image+caption pair as

2 �������G4 0 7 	 "B2 � % �
� ���G4 0 7 	 " HIKJL�MON J

�C�ED � 2 � % ��4 0��K	 8 �F0���4 0�� : � 	�� (1)



Fig. 1. State transitions diagram and output for an image+caption HMM.

We model the output density 2 ��354 ��	
for each state

� & - as a mixture of multivariate
Gaussian densities on

( * +
:

2 � % 4 ��	 "
�
H� D �

� ��� ��� #� � <
	 	 + 4 � ��� � 4�
: L����� :��
��� ��� J���� L��� � ��� :��
��� ��� � (2)

where � ��� � ’s are the mixture weights, � � � � the mean-vector and
� ��� � the diagonal

covariance-matrix for the of the ! -th mixture component of the state
�
. The transition

probabilities 8 �K3 4 3 	
are initially set to be uniform for all permissible states in

�
.

The emission densities 2 ��354 3 	
and transition probabilities 8 ��354 3 	

of the HMM may
be estimated, given a training collection of image+caption pairs, to maximize the joint
likelihood (1). Details of this maximum likelihood estimation procedure are standard
(cf [6]) and therefore omitted.

For indexing a new image
�
, the HMM provides the conditional probability, given

all the visual evidence % �
� in

�
, that a particular image-region

���
was generated by a

particular concept
� & - , as

8 �90�� " � 4 % �
� �A0 7 	 " 2 � % �

� ��0 � " �O4 0�76	
2 � % �

� 4 0 7 	 "
" IKJL$# I&% D �(' ��ED � 2 � % � 4 0 � 	 8 �90 � 4 0 � : � 	
" IKJL M�) J ' ��ED � 2 � % � 4 0 � 	 8 �90 � 4 0 � : � 	 �

Therefore, the probability of a particular concept
��& - being present (somewhere) in

an image may be calculated as

8 ��� & �G4 ����0 7 	 "
�

H �ED � 8 �90�� " �O4 % �
� �A0 7 	��

(3)

A freely available toolkit, HTK [7], efficiently implements all the basic parameter esti-
mation and probability calculation algorithms needed for working with the model de-
scribed above. We have used HTK in the experiments described in Section 4 below.

2.1 HMMs vs Statistical Machine Translation

Duygulu et al [2] have presented the image annotation problem as a variant on the sta-
tistical machine translation (MT) problem. In their formulation, the representations % �



of the segmented image-regions are discretized and then treated as “words,” replacing( * +
with a vocabulary

�
of visual expressions (visterms). The training corpus of im-

age+caption pairs is then treated as a corpus of aligned bi-lingual text, and statistical
machine translation techniques are employed to infer a stochastic translation lexicon8 � % 4 ��	

between
� & - and % & �

. Given a test image
�

with visterms % �
� , a probability

is calculated for each concept
� & - as

8 �F� & �G4 � 	 " H� M�� 8 ���O4 % 	��8 � % 4 � 	 "
�

H �ED � 8 �F�O4 % � 	 #� �

Note that the estimation of 8 � % 4 ��	
in their case strongly resembles the embedded esti-

mation of 2 � % 4 ��	
in the HMM case, provided we set the transition probabilities 8 �K3 4 3 	

to be uniform. Thus the primary difference between our model and theirs is that the
image-features are modeled here as continuous-valued vectors, avoiding the need for
quantization. Empirical evidence in Section 4 will show that preserving the continuous-
valued representation of the % �

’s results in significant improvement in indexing and
retrieval performance.

2.2 HMMs vs Continuous Relevance Models

Manmatha et al [5, 8] have used a continuous relevance model (CRM) to perform image
annotation and retrieval. In their case, continuous-valued visual features

� % �A�
are ex-

tracted from rectangular regions of the (test) image
�

and compared with the visual fea-
tures extracted from each training image � using a Gaussian kernel function. In particu-
lar, for a training image � with visual features

��� � ����������� � �
and caption

�
	 � ����������	O���
,

� � % 4 � 	 " #�
�

H �ED �
� : L� ��� :� % � J���� L ��� :� % �� � < 	 	 + 4 � 4 �

The kernel bandwidth
� "�� �

is estimated from held-out data. This yields the proba-
bility of a concept

� & - being present in a test image
�

as

8 ���O4 � 	�� H
� �� ���O4 � 	 � �F� � � 	 " H
� �� ���O4 � 	 � �C�ED �
� � % � 4 � 	��'�

(4)

where
�� �F�O4 � 	

is a smoothed estimate of relative frequency of
�

in the caption of � .
While, upon first glance, the CRM seems to differ fundamentally from the HMM

paradigm proposed here, deeper analysis reveals remarkable similarities. In particular,
if each state

� & - of the HMM has exactly as many Gaussian densities in the mixture as
the number of training images-regions that contain

�
in their caption, the densities have

mean � � � � " � �
, the variances

� ��� � are constant, and the weights � � � � are uniform,
the probability calculations of the HMM and the CRM are nearly identical.

The HMM, by modeling each
�

with a small mixture of Gaussians, performs an
abstraction of the information presented in the paired image+caption training data.
For each concept

� & - , only the sufficient statistics (mean and covariance) of the



image-features are retained. Consequently, the HMM performs the test annotations very
fast, since each image-feature vector % �

needs to be compared only with the Gaussian-
mixture representation of each concept, not each training image. This results in tremen-
dous computational speed-ups compared to the CRM, which in principle needs to com-
pare the test-image with every training image. The annotation performance of the HMM
and CRM are comparable, as will be shown in Section 4.

3 HMM Design, Training and Indexing Issues

We next discuss several design choices that need to be made while using HMMs: model
topology selection, parameterization, estimation and decoding (inference).

– HMM topology and permitted transitions: Given a set of image+caption pairs, we
construct, for each image, an HMM with as many states as the number of words
in its caption. The states of the HMM are fully connected, amounting to permitting
any object to be present adjacent to any other object. While we have not yet done
so, one could investigate the exploitation of the spatial propensities of objects such
as sky and grass to appear in certain positions ! in the image, and the propensity
of other objects such as tiger and sky (not to) appear in adjacent blocks.

– Shared-state HMMs: A caption
� & - appearing in two different images is mod-

eled by the same state. The HMM for each image “shares” states from a common
pool of

4 - 4
states, i.e., the states of the HMM of each training image are “tied” to

the corresponding states of other HMMs.
4 - 4 " �����

for COREL;
4 - 4 " ���

for
TRECVID.

– Accounting for unlabeled objects: In several images, the annotators do not label
some obvious concept in-spite of having a word in - corresponding to it. For a
far-from-the-most-egregious example of such omissions, note that grass and the
fence occupy roughly equal areas in the image of Figure 1, and yet the caption
includes fence but not grass. To account for such omissions, an additional con-
cept, which we call null, is introduced into the vocabulary and is added forcibly
to the caption of each image. Since an HMM is a generative model, the entire image
needs to be accounted for by the model, and adding a null to the set of permissible
states results in better modeling of the data.

3.1 HMM Training Issues

Maximum likelihood estimation of the HMM parameters is performed in a standard
manner as prescribed in [7]. We initially use a single Gaussian probability density func-
tion (pdf) for each state

� & - , initialized with the common mean and variance com-
puted from all the images in the training data. Several iterations of the EM algorithm
are carried out to update the means and variances of the HMMs. Transition probabilities
are not updated in the experiments reported below.

– Mixture splitting: Once the single Gaussian pdf’s have been estimated, the pdf for
each state

�@& - is replaced by a mixture of a pair of Gaussian pdf obtained by
minor perturbation. Further iterations of the EM algorithm are then carried out



to (re)estimate the Gaussian mixture pdf’s. This procedure is standard in train-
ing speech recognition systems and is well described in [7]. As long as the data-
likelihood increases (substantially) by increasing the number of mixture compo-
nents in 2 � % 4 ��	

, we continue to increase the mixture size of the output pdf’s of each
state until a certain pre-specified maximum mixture size is attained.

– Variance-floor: It is standard in estimation of Gaussian pdf’s to impose a “variance
floor” — a minimum value for the estimate of the variance. Typically, this is set
to be a fraction of the total empirical variance of all the image data. This prevents
overfitting of the model, as well as avoids numerical (divide-by-zero) issues.

3.2 Image Annotation Issues

For indexing test images, a fully connected
4 - 4

state HMM is used, one state corre-
sponding to each

��& - , with 2 �K3 4 ��	
as estimated above. Transition probabilities of the

HMM are set to be uniform. Given a test image
�
, the Balm-Welch algorithm is used

to compute the posterior probability of (3), which in turn is used to rank all images in
response to a single-word query comprised of

�
.

The transition probabilities of the decoding HMM need not be uniform. A simple
variation is to compute the co-occurrence statistics of the words in the concept vocab-
ulary, and use such statistics to adjust the transition probabilities. For instance, plane
and sky tend to co-occur much more often than plane and water, suggesting that8 � ����� 4 ���	��
� 	

could be set higher than 8 ��������� 4 ������
��O	
. In a contrastive experiment,

we set these probabilities to be proportional to the corresponding relative frequencies.
Specifically, for each concept

� & - , consider all training images whose captions
contain

�
. For each such caption, enumerate co-occurrence pairs

�F�1�/��� 	
, where

�����" �
denotes other concepts in the same caption. For example, if

�
is plane, and an image

is captioned
� $�

sky,plane,clouds
�
, then the co-occurrences enumerated are�

plane,sky
	

and
�
plane,clouds

	
. Then we set

8 ��� � 4 ��	 "
��� � � � co-occurrence count of � � � ��� �" � � � ��! co-occurrence count of � � � � � � � �$�"�#�" �� � < � �"� " �

.
(5)

Since the frequent concepts often co-occur with each other, e.g. sky and water in the
COREL data-set, and the rare concepts co-occur with one of the freuent concepts, the
HMM remains fully connected. The choice of the self-loop probability, 0.2, is ad hoc.

4 Experimental Results

We were kindly provided the processed training and test data for two image collections
described below, one of still images and another of key frames extracted from video,
by the 2004 Johns Hopkins University Summer Workshop team [9]. We use the image-
segmentation and features — color moments, texture coefficients and oriented-edge
histograms — extracted by [9]. State-of-the-art image indexing and retrieval perfor-
mance has been published on these data-sets, and provides us a way to make controlled
comparisons with related techniques.



1. The COREL data-set consists of 5000 images from 50 Corel Stock Photo CDs pro-
vided to us by [2]. Each CD contains 100 images, of which 90 are allocated to
the training set and 10 to the test set, resulting in 4500 training images and a bal-
anced 500-image test collection. Each image is divided into 6 � 4=24 blocks, and
30-dimensional visual features are extracted from each block. The caption vocabu-
lary has

4 - 4 " � ���
words. This training and test partition is also used by [5, 10].

2. The TRECVID feature-detection data-set [11] consists of key-frames extracted
from news video from several broadcast sources. A community-wide effort has re-
sulted in 44,100 images from the TRECVID 2002 corpus being annotated with a set
of 137 concepts. This collection was divided into four parts by [12]: concept-train,
concept-validate, concept-fusion-1 and concept-fusion-2. We use the first three sub-
sets (35K images) to train the HMMs, and hold out concept-fusion-2 (9K images)
for image retrieval experiments. Each image is divided into 7 � 5=35 blocks, and
76-dimensional image-features are extracted from each. The concept vocabulary
for these experiments has been culled to

4 - 4 " � �
words (cf [9]).

To evaluate image retrieval performance, we follow [5] and construct single-word queries
for each word

�
in the concept vocabulary - . An image from the corresponding test

collection is deemed “relevant” to a query if its true caption contains the query-word
�
;

other images are deemed irrelevant. We compute non-interpolated mean average preci-
sion (mAP) over all queries, a standard measure for ranked retrieval (cf [11]).

While
4 - 4 " � � �

for COREL, only 260 of the concepts have at least one relevant
image in the 500-image test collection. The mAP can therefore be computed only on
this subset of single-word queries for COREL; mAP is computed over all

4 - 4 " � �

single-word queries for TRECVID.

4.1 Increasing the Number of Gaussian Mixture Components

One expects that increasing model complexity results initially in better models and
improved indexing, until overtraining sets in. We investigate this by varying

�
, the

number of Gaussian pdfs in the mixture of (2), and measuring mAP on the two test
collections described above. The variance-floor for each pdf is 1% of the global variance
of all image-features. The decoding HMM has uniform transition probabilities:

�) .
Table 1 reports performance on the COREL and TRECVID collections. Note that

the models improve as expected. The improvement in mAP, for instance, from 2 to 10
mixture components for the COREL collection is statistically significant at a p-value of
0.002, while that from 16 to 20 on TRECVID at a p-value of 0.006.

Recall that the COREL training set is almost an order of magnitude smaller than the
TRECVID training set. Consequently, while performance on COREL begins to level
off at

� " # � , TRECVID exhibits little overtraining. Retrieval results with
� " # ���

for TRECVID will be presented in Section 4.5.

4.2 Using Word Co-occurrence Probabilities

One also expects to see some benefit from using the word co-occurrence probabilities
of (5) instead of uniform transition probabilities in the decoding HMM. The results of



Table 1. Effect of mixture-size on image retrieval performance.

Mixture-size 1 2 8 10 12
COREL mAP 0.132 0.140 0.161 0.169 0.167

Mixture size 1 10 12 16 20
TRECVID mAP 0.095 0.141 0.145 0.157 0.163

Table 2. Effect of co-occurrence probabilities on image retrieval performance.

Transition Probabilities Uniform From (5)
COREL mAP 0.169 0.178
TRECVID mAP 0.163 0.165

this investigation are reported in Table 2. The variance floor is held at 1% of the global
variance, with

� " # � for COREL and
� " < �

for TRECVID.
While persistent across data-sets, the mAP improvements are not statistically signif-

icant: on COREL, it is significant only at a p-value of 0.09, and on TRECVID at 0.19.
However, they are easy to estimate and entail no additional computation during index-
ing. So we retain the use of co-occurrence probabilities in subsequent experiments.

4.3 Lowering the Variance Floor During Density Estimation

Another way of controlling overfitting of Gaussian mixture models is to prevent the
estimate of variance from being too small. We start with a (conservative) floor of 1%
of the total variance of all the image-features in the training data on the variance of
each mixture component of every state emission density 2 �K3 4 ��	

. Alternatively, we also
estimate HMMs with lower variance floors — 0.2%, 0.1%, 0.05% and 0.02% of the
global variance — and evaluate image retrieval performance. The number

�
of mixture

components is held at 10 for COREL and 20 for TRECVID, and the corresponding word
co-occurrence probabilities are used in the decoding HMM.

Table 3 reports the mAP on the two collections. The results indicate that 1% is
indeed a conservative limit, and lower settings improve retrieval performance. The mAP
improvement from 0.179 to 0.192 on COREL is statistically significant at a p-value of
0.03, but from 0.165 to 0.169 on TRECVID is not significant (p=0.24).

4.4 Comparison with the Normalized CRM and Statistical MT Models

On the same COREL training/test partition, the same 260 single-word queries and the
same 30-dim features, the normalized CRM of [10] has a considerably higher mAP of
0.26, while the MT model of [2] has a lower mAP of 0.15 (cf [9]). For the 75 single-
word TRECVID queries, with identical 76-dim visual features, the normalized CRM
has a mAP of 0.16 and the MT model 0.13 (again see [9]). Table 3 therefore suggests
that the HMM approach is already competitive with alternatives proposed in the litera-
ture, with a high potential to be significantly better as discussed in Section 5.



Table 3. Effect of the variance-floor on image retrieval performance.

Variance-Floor 0.01 0.002 0.001 0.0005 0.0002
COREL mAP 0.178 0.179 0.192 0.185 —
TRECVID mAP 0.165 — 0.169 — 0.164

4.5 Larger HMMs for the TRECVID Data-Set

Since Table 1 suggests that overtraining has not yet set in at
� " < �

for the TRECVID
data-set, we gradually increase the number of mixture components up to 100, enforcing
a variance floor of 0.001. Word co-occurrence probabilities are used during indexing.

The mAP of the resulting model is 0.186, which significantly better (p=0.002) than
0.169, the best result of Table 3. It is also significantly better than the CRM or MT model
for the same visual features. The authors of [10] report in a private communication that
the CRM attains a mAP of 0.182 using different (30-dim) visual features.

Figure 2 illustrates the top 5 retrieved images for 3 out of the 75 queries, and their
top caption words according to (3). Words present in the manual annotation are under-
lined. The probability (3) of the query-word given the test image is used to rank images
in the test collection. Note that in the ranked-retrieval paradigm adopted here, many of
the top-ranked images are relevant even when their automatic captions contain errors.

Fig. 2. Retrieved shots for a few TRECVID queries, and their top-4 automatic captions.



5 Concluding Remarks

We have presented a novel method for image annotation for the purpose of content
based image retrieval, and evaluated it in several ways to establish that it is indeed
competitive with or better than the state of the arton standard data-sets.

Much more is known among practitioners of automatic speech recognition about
training and decoding using HMMs, including context-dependent modeling, unsuper-
vised adaptation, adaptive and discriminative training, and minimum error decoding,
which remains to be applied to the image annotation and retrieval problem. We expect
that significant improvements in image annotation and retrieval performance will be
obtained by intelligently importing such ideas from the speech recognition literature.
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