Glottalization and Vowel Nasalization Detection

Tom Wang, Georgia Tech 16th August 2004 WS04

Outline

- Vowel Nasalization Detection
- Glottalization Detection

Vowel Nasalization

- Nasalization in Vowel Production: coupling of oral and nasal cavities during vowel production (Beddor, 2003)
- Goal: Build classifier for nasalized vowels vs. un-nasalized vowels (e.g. ae, ow,... vs. ae_n, ow_n,...)

"you know"

• Motivation: may be a sign of deleted nasal phoneme enhance pronunciation model

Vowel Nasalization Detection

- Data set: Switchboard (WS96, WS97)
- SVM Training Features: MFCCs, Knowledge Based Acoustic Parameters (Bitar & Espy-Wilson, 1996), Formant (Zheng & Hasegawa-Johnson, 2004), Rate Scale (Mesgarani, et al. 2004)
- Features taken per 5 ms frame.
- Classify on per frame basis
- Results: Linear SVM
 62.95% accuracy

Vowel Nasalization Detection

- Divide problem into vowel-specific classifiers (i.e. ae vs. ae_n)
- Test common classifier on vowel specific pairs
- Finding good training parameters Entire Regularization Path of SVMs (Hastie, et al. 2004) Choose range of values

Summary of Results

Vowel	Specific	Specific –	Common	#
	– Default	Optimized C		Tokens
ey vs. ey_n	80.73%	81.30%	80.92%	524
iy vs. iy_n	55.12%	58.11%	75.60%	1406
ae vs. ae_n	72.28%	74.51%	68.48%	2024
ao vs. ao_n	61.44%	63.40%	73.20%	612
ah vs. ah_n	64.20%	65.01%	68.73%	2712
ih vs. ih_n	56.80%	54.63%	62.36%	3826
eh vs. eh_n	57.61%	60.10%	58.73%	1604
aa vs. aa_n	60.09%	52.23%	55.84%	1388
ax vs. ax_n	56.56%	55.85%	56.38%	564
er vs. er_n	56.19%	47.52%	54.46%	404
ow vs. ow_n	49.09%	55.64%	54.61%	2408
ay vs. ay_n	47.88%	51.80%	54.77%	944

Outputs used with SVMs of other phonetic features in different pronunciation models.

Optimized C may have caused over-fitting (Cohen & Forman, 2004)

Outline

- Vowel Nasalization Detection
- Glottalization Detection

Glottalization Detection

- Glottalization glottal stop or deviation from canonical normal voice glottal stop "absolutely": I transcribed with 'q', no 't' creaky vowel "shepherd": I transcribed with 'er_cr', no 'd' creak vowel "er_cr": I non-creaky vowel "another": I transcribed with 'er' non-creak vowel "er": I
- Motivation: enhance pronunciation model determine if/which phoneme deleted

Shattuck-Hufnagel & Redi, 2001

Glottalization Detection

- Approach:
 - (1) Extract q and cr tokens and generate acoustic features per frame Tokens – exclusively as allophone of /t/, /d/ (not word-initial)
 - (2) Train SVM to detect q, cr
 - (3) Re-adjust acoustic features
 - (4) Error analysis on current /t/, /d/, /p/, detectors
 - (5) Evaluate added detectors
- Data Switchboard, Switchboard transcriptions

Acoustic Features of Glottalization

- Aperiodicity irregularity in duration of glottal pulses (Shattuck-Hufnagel & Redi, 2001)
 Cepstral Peak Prominence (CPP) (Heman-Ackah, et al. 2001)
- Creaky voice wide pitch period, low fundamental frequency, pitch period damping (Shattuck-Hufnagel & Redi, 2001) Autocorrelation estimation of pitch Cepstral pitch determination
- Relative amplitudes of H1, F1/H2 (Klatt & Klatt, 1990; Ladefoged, et al. 1984)
 Spectral slice
- Generate in MATLAB

SVM Training and Error Analysis

- Train classifier (SVM): q vs. rest of utterance vowel_cr vs. rest of utterance vowel_cr vs. vowel
 Parameter selection
 Add additional acoustic features (MFCCs, Knowledge Based Acoustic Parameters, etc.)
- Test current /t/, /d/, etc. detectors Add glottalization detectors to pronunciation model Evaluate

Summary

- Glottalization may be a sign of deleted sound (/t/, /d/) Detection can improve pronunciation model
- Experiments similar to vowel nasalization detection
- Automated acoustic feature extraction SVM training and testing Evaluating addition of detectors