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• warmth [w ao r m p th] - Phone insertion?

• I don’t know [ah dx uh_n ow_n] - Phone deletion??

• several [s eh r v ax l] - Exchange of two phones???

• Many pronunciation phenomena can be 
parsimoniously described as resulting from 
asynchrony and reduction of sub-phonetic 
features

• instruments [ih_n s ch em ih_n n s]

Why feature-based pronunciation modeling?

everybody [eh r uw ay]

– One set of features based on articulatory
phonology [Browman & Goldstein 1990]:
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Approach:  Main Ideas
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A feature-based pronunciation model

• The model is implemented as a dynamic Bayesian 
network (DBN):
– A representation, via a directed graph, of                      

a distribution over a set of variables that                     
evolve through time

• Example DBN with three features:
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given  by  baseform  pronunciations
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Combining SVM outputs with the DBN

• Task 1:  Converting between articulatory features and SVM distinctive 
features (DFs)
– Method:  Add DBN variables corresponding to DFs, and add deterministic 

mappings from surface articulatory variables to DFs

• Task 2:  Incorporating SVM output probabilities
– Method:  Soft evidence – similar in spirit to HMM/ANNs
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Example alignment using SVM/DBN



Design decisions

• What kind of SVM outputs should be used in the DBN?
– Method 1 (EBS/DBN):  Generate landmark segmentation with EBS using 

manner SVMs, then apply place SVMs at appropriate points in the 
segmentation
* Force DBN to use EBS segmentation
* Allow DBN to stray from EBS segmentation, using place/voicing SVM outputs 

whenever available

– Method 2 (SVM/DBN):  Apply all SVMs in all frames, allow DBN to consider 
all possible segmentations
* In a single pass
* In two passes:  (1) manner-based segmentation; (2) place+manner scoring

• How should we take into account the distinctive feature hierarchy?

• How do we avoid “over-counting” evidence?

• How do we train the DBN (feature transcriptions vs. SVM outputs)?



A chronology of DBN/SVM rescoring experiments

• For each lattice edge:
– SVM probabilities computed over edge duration and used as soft evidence in DBN
– DBN computes a score S ∝ P(word | evidence)
– Final edge score is a weighted interpolation of baseline scores and EBS/DBN or 

SVM/DBN score

Date Experimental setup 3-speaker  
WER (# errors)

RT03 dev  
WER

- ∞
Jul31_0

Aug1_19
Aug2_19

Aug4_2
Aug6_20
Aug7_3 + reduction probabilities depend on word frequency 27.4 (544)
Aug8_19 + retrained SVMs + nasal classifier + DBN bug fixes 27.4 (544)
Aug11_19 SVM/DBN, 1 pass Miserable failure!
Aug14_0 SVM/DBN, 2 pass 27.3 (542)
Aug14_20

Baseline 27.7 (550) 26.8
EBS/DBN, “hierarchically-normalized” SVM output 
probabilities, DBN trained on subset of ICSI transcriptions

27.6 (549) 26.8

+ improved silence modeling 27.6 (549)
EBS/DBN, unnormalized SVM probs + fricative lip feature 27.3 (543) 26.8

+ DBN trained using SVM outputs 27.3 (543)
+ full feature hierarchy in DBN 27.4 (545)

SVM/DBN, 2 pass, using only high-accuracy SVMs 27.2 (541)



Some complicating factors...

• Practicalities:
– Inaccurate word boundaries in lattices
– Very short words
– Pauses, laughter, non-words

• More general issues:
– Relative weighting of soft evidence vs. articulatory variables
– Over-counting of evidence largely not addressed
– SVM/DBN rescoring complicated by context-dependent SVM 

training



The word boundary problem



Some conclusions

• No major error rate improvements yet... BUT:

• The SVM/DBN system produces reasonable analyses of 
reduction and coarticulation in spontaneous speech

• EM parameter learning produces reasonable distributions

• Many ideas for future work, e.g.:
– Further analysis of the current system

* Error analysis
* Computational complexity analysis

– More context-dependent modeling (based on syllable structure, 
stress accent, position in word, speaker clustering)

– Investigation of the usefulness of different features
– Better understanding of the mathematical issues of feature 

hierarchies in landmark-based recognition
– Exploration of soft evidence in DBNs for ASR in general
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