Distinctive feature detection and landmark-based rescoring

Amit Juneja

University of Maryland College Park juneja@glue.umd.edu

Agenda

- Phonetic features and acoustic landmarks
- Acoustic features
- Probabilistic landmark detection
- Place and voicing classification
- Application to rescoring
 - DBN and articulatory feature based pronunciation model
 - Constrained landmark and feature detection
 - Queries of feature pairs

Phonetic features (Chomsky and Halle, 1968)

- Three kinds of phonetic features characterize speech sounds
 - Source features determine the kind of excitation signal
 - Manner of articulation features determine how open or close is the vocal tract
 - Place of articulation features determine the location of primary constriction
- Phonetic features have articulatory and acoustic correlates, and it is believed that words are stored in memory as bundles of phonetic features (Stevens 2002).

2. Acoustic features

- Multiscale spectro-temporal modulation features (Mesgarani, 2004)
- Long-window mel-frequency cepstral coefficients (MFCCs)
- Parameters extracted from speech on the basis of acoustic phonetics knowledge (Bitar and Espy-Wilson, 1996)
- Formants and related measurements like formant amplitude and bandwidth (Zheng and Hasegawa-Johnson, 2003)
- Very short window MFCCs (Hasegawa-Johnson et al 2004)

3. Probabilistic landmark detection Event-based system (EBS) (Juneja and Espy-Wilson 2004)

- SVM-based classifiers for the manner phonetic features *sonorant*, *syllabic*, *continuant* and *silence* - are applied in each frame of speech
- SVM outputs are converted to posterior probabilities using a histogram method
- The probabilities are combined to get probabilities of manner classes vowel (V), sonorant consonant (SC), fricative (Fr), stop release (ST) and silence (SIL)
- A probabilistic segmentation algorithm (similar to Lee 1998) is applied to these probabilities to obtain the manner change landmarks

4. Place and voicing classification at

landmarks

All results in percent

Feature	Accuracy (before WS04)	Accuracy (now)
Stop Alveolar	64.02	70.00
Fricative Anterior	75.71	77.14
Nasal Labial	67.30	81.18
Rhotic for vowels	-	88.16
Flap	_	86.2
1 ap	-	00.2

5 (a) Unconstrained outputs

- Outputs of SVMs are supplied to the DBN based pronunciation model in two ways
- Method 1:

Probabilities of the manner phonetic features are provided in each frame and the probabilities of place and voicing features are provided at landmarks obtained from the probabilistic segmentation algorithm

• Method 2:

Each manner, place and voicing SVM is applied in each frame, and the probabilities of each phonetic feature is given to the DBN in each frame

5 (b) Rescoring using EBS Feature bundle representation

/z/ /I/ /r/ /o/ /w/	
---------------------	--

$U \Rightarrow$	u_1	u_2	u_3	u_4	u_5
	-sonorant	+ sonorant	+ sonorant	+ sonorant	+ sonorant
	+ continuant	+ syllabic	-syllabic	+ syllabic	-syllabic
	+ strident	-back	-nasal	+back	-nasal
	+voiced	+high	+rhotic	-high	+labial
	+anterior	+lax		+low	

$L \Rightarrow$	l_1	l_2	l_3	l_4	l_5
	Fricative onset	Vowel onset	SC onset	Vowel onset	SC onset
	Fricative offset	Syllabic peak	Syllabic dip	Syllabic peak	Syllabic dip
			SC offset		SC offset

of landmarks, O: acoustic observations

WS	S04
----	-----

5 (c) Computation of score for a pair of features

- Detection can be constrained to get probabilities of a pair of features
- For example, a broad class vowel (V) and its place low

SUMMARY

- Landmarks can be extracted from telephone speech with reasonable reliability using support vector machines
- Combination a variety of different acoustic observations and focus on training methods has significantly dropped the classification error on phonetic feature classification
- Further improvement is required in place of articulation classification
- Frame-based and landmark-based probabilities of phonetic features have been used with DBN-based pronunciation model, a discriminative pronunciation model and landmark based rescoring

Future Work

A number of experiments are planned for the near future

- Improvement in phonetic feature classifiers
- Integration of prosodic features and syllable structure (Greenberg 2004)
- Assessment of the system in noise
- Comparison of feature classification accuracies with benchmark phoneme classification accuracies on telephone speech
- Modification of classifiers for better integration with DBN and MaxEnt model
- Improvement of probabilistic modeling for event-based rescoring