Machine Learning
Finding Patterns in the World

Mark Dredze
mdredze@cs.jhu.edu www.dredze.com

Human Language Technology Center of Excellence (HLTCOE)
Center for Language and Speech Processing (CLSP)
Johns Hopkins University
• What is machine learning?
 – Teaching a computer about the world

• How to apply machine learning?
 – Observe the world
 – Develop models that match observations
 – Teach computer to learn these models
 – Computer applies learned model to the world
Example: Animal Pictures
Machine Learning: Fundamental Questions

• What does it mean to learn?
• What can we output?
• How to represent the world for the computer?
• Motivations and learning algorithms
• How can we guide machine learning?
What Does it Mean to Learn?

• Learn patterns in data
• A system has learned when it can:
 – Take input
 • Pictures
 – Provide output:
 • Belongs in house/doesn’t belong in house
Finding Patterns of Interest
Finding Patterns of Interest
Unsupervised Learning

• Look for patterns in data
• No examples of output
• Pro:
 – No labeling of examples for output
• Con:
 – Cannot demonstrate specific types of output
• Applications:
 – Data mining
 • Finds interesting patterns in data
Learning Provided Patterns
Supervised Learning

• Learn patterns to simulate given output
• Pro:
 – Can learn complex patterns
 – Good performance
• Con:
 – Requires many examples of output for examples
• Applications:
 – Classification
 • Sorts data into predefined groups
What Does it Mean to Learn?

• **Input:** \(\{x_i\}_{i=1}^N \) \(x_i \in \mathbb{R}^M \) \(\{y_i\}_{i=1}^N \) \(y_i \in \mathbb{R} \) or \(y_i \in \{L\} \)

• **Loss function** \(\ell(h(x),y) \geq 0 \)

• **Hypothesis class** \(h^* \in H \)

\[
\sum_{i=1}^{N} \ell(h^*(x_i),y_i) \leq \varepsilon, \quad \varepsilon = 0 \vee \varepsilon \text{ is small}
\]

• **Learning algorithm** \(A \)

\(\hat{h} = A(\{x_i,y_i\}_{i=1}^N) \)

— such that \(\hat{h} = \arg\min_h \sum_{i=1}^{N} \ell(h(x_i),y_i) \)
• **Loss**
 – Measures system performance
 – Depends on output type/goal
 – Generalization error (over-fitting)

• **Input:**
 – Divide into
 – Train: learn h
 – Development: tune parameters of A
 – Test: Evaluate h

– **Output:**
 – Learned model
 • Type depends on learning algorithm
Types of Learning: Output

• Classification
 – Binary, multi-class, multi-label, hierarchical, etc.
 • Classify email as spam vs. ham
 • Loss: accuracy

• Ranking
 – Order examples by preference
 • Rank results of web search
 • Loss: Swapped pairs

• Regression
 – Real-valued output
 • Predict the price of tomorrow’s stock price
 • Loss: Squared loss

• Structured prediction
 – Sequences, trees, segmentation
 • Find faces in an image
 • Loss: Precision/Recall of faces
Example: Document Classification

• Group a collection of articles by topic

 The Chicago Cubs played a great game of baseball.
 Sports

 The markets rallied today sending the S&P 500 to a new 3 week high to start the financial year.
 Finance

• Problem characteristics
 – Classification- assign a class label (topic) to each document
 • Assume binary
 – Supervised- provided with labeled articles
How Do We Represent Data?

• NLP
 – Bag of words, bi-grams
 – “The Chicago Cubs played a great game of baseball.”
 • the | chicago | cubs | played | a | great ...
 • the chicago | chicago cubs | cubs played | played a

• Other problems have different representations
 – Speech signal
 – Images
 – DNA
Supervised Approach to Learning

• Remainder of tutorial
 – Supervised
 • Nearest Neighbors
 • Decision Trees
 • Artificial Neural Networks
 • Perceptron
 • Support Vector Machines
 – Unsupervised
 • K-Means
 • Gaussian Mixture Models
Nearest Neighbors

• Motivation:
 – “This document has the same label as the most similar document I have seen.”

• Example:
 – This document is about baseball. The last baseball article I saw was about sports. This is about sports.

• Approach:
 – Save every example in the training set
 – For a test example:
 • Find the closest training example
 • Apply the label from this training example
Nearest Neighbors
• Similarity function
 – Euclidian distance
• How to choose K?
 – Small K is fast, finds single closest example
 – Large K slower, smooths outliers
• How do we know we have learned?
 – Training error: select parameters (K) that minimize error on training examples?
 • Note: K=1 always gives an error of 0
 – Some work on estimating true generalization error
• Bias/variance tradeoff
 – As we increase K
 • Bias- increases towards most popular labels
 • Variance- decreases
 – In practice:
 • Select K using development data
 • Reflective of actual performance
• Tradeoff key to generalization to new data
Summary

• Pros:
 – Easy to implement, understand output, complex functions

• Cons:
 – Need to store every observed example
 – Choosing similarity metric
 – Slow classification

• Useful extensions:
 – Learn similarity metrics
 • Large Margin Nearest Neighbor (LMNN)
 – Efficient comparisons
• Motivation:
 – “I can decide about a document by incrementally considering its properties.”

• Example:
 – This document says the word “baseball.” So its about sports. If it did not, I would next check if it said “finance”, then...

• Approach:
 – Construct a “tree of decisions” to follow, where a leaf applies a label to the document
Decision Tree

GAME

Yes

BASEBALL

Yes

Sports

No

FOOTBALL

Yes

Sports

No

Finance

No

MARKETS

Yes

Finance

No

Sports
• ID3 Algorithm
 – Greedily add most discriminating features

• ID3 (Examples, target_attribute, attributes)
 – If all target_attribute examples have the same label, apply label
 – Else
 • A = attribute that best classifies examples
 • Add branches for each value of attribute
 • Create subtree from: ID3(examples, A, attributes – A)
• Complexity of tree
 – How many levels?

• Pruning
 – Reduces over-fitting
 – C45 algorithm

• Selecting informative choices
 – Which features to select at each point?
 – “attribute that best classifies examples”
 • Information entropy common choice
• **Pros:**
 – Very easy to understand (“white box”), good for identifying a few critical features, fast

• **Con:**
 – Very slow to train, over-fitting, limited powers of representations (XOR), optimal trees NP-Complete

• **Useful extensions:**
 – Real valued data
 – Decision stumps for boosting
 – Random forests (ensemble approach)
Artificial Neural Networks

• Motivation
 – Extract linear combinations from input
 – Output nonlinear function of these combinations
 – Multiple functions performed in parallel
 – Based on neural networks in the brain
 • The result is a lot of hype

• Approach
 – Construct a graph of neural connections
 – Define input and output nodes
 – Learn hidden internal nodes
Single Hidden Layer Feed Forward Neural Network

Output

Hidden Layer

Input

Y₁ … Yₖ

Z₁ Z₂ … Zₘ

X₁ X₂ X₃ … Xₚ

K(M+1) weights

M(P+1) weights
• Activation function for nodes
 – Often chosen as the sigmoid

\[
\sigma(x) = \frac{1}{1 + e^{-x}}
\]

– Source for algorithm name
 • Neuron’s have activation threshold
• Minimize loss function
 – Regression: squared error

\[R(\theta) = \sum_{k=1}^{K} \sum_{i=1}^{N} (y_{ik} - f_k(x_i))^2 \]

K- outputs
N- examples
y- correct output
f- NN output
x- example

• Back-propogation
 – Gradient descent on minimizing R
 – Sweep forward and backward over the network
 • Only need to compute local values
 • Similar to EM learning, HMM forward/backward training
 – Problems: local minima, over-fitting, initialization
Design Decisions

• Learning Algorithm
 – Issues: local minima, over-fitting, training time

• Network Structure
 – Number of hidden layers, nodes per layer

• Loss function
 – Regression: squared error
 – Classification: cross-entropy

• Network type
 – Different functions in network
 • Radial basis function networks
• Pros:
 – Can learn non-linear functions
 – Multiple outputs at once
• Cons:
 – Not easily interpretable (difficult to influence)
• Extensions:
 – Many! Whole conferences and journals on NNs
 – Applications to supervised, unsupervised learning
 – Deep belief networks (Hinton et al.)
Single Hidden Layer Feed Forward Neural Network
Single Hidden Layer Feed Forward Perceptron Neural Network
• 1958 by Frank Rosenblatt (Cornell)
 – Grew from work on learning and the brain
• One of the oldest and (still) most effective learning algorithms
 – Works well on a large number of problems
• Known as single layer neural network
Perceptron Algorithm

• Linear classification
 \(\hat{y} = \text{sign}(w \cdot x) \)
 w- weight vector
 x- example

• Learn weight vector w
 – Incrementally update w based on input
 – Minimize number of mistakes
 – Yields stochastic gradient descent algorithm

 \[w_i = w_{i-1} + y_i x_i \]

 mistake driven
Geometric Motivation
• Learning guarantee
 – If a separating hyperplane exists, will find separator with finite number of examples

• Problems:
 – Finite can still be large (slow convergence)
 – Many correct hyperplanes
 • Which one is the best
 – Sometimes separator doesn’t exist
 • Outliers, noisy labels, etc.
 • Will never converge
• Motivation:
 – Similar to perceptron
 – Which is best separator:
 • Hyperplane with maximum margin
 – Margin- distance between examples and separator

• Approach:
 – Define optimization problem given training data
 – Learn best separator
Geometric Motivation
SVM Learning

• “Support vectors”
 – Problem can formulated as combination of input vectors

• Convex QP problem
 – Many efficient algorithms to solve

• Formulation allows outliers
 – Tolerance set through parameter
Summary

• Pro:
 – Very good performance, efficient learning

• Cons:
 – Hard to interpret results, scaling to large datasets

• Extensions:
 – Transductive/Semi-Supervised
 – Regression
 – One-class
 – Kernels for non-linear learning
• So far supervised
• Many applications without labels
 – No time/money to create labels
 – Very large dataset
 – Discover natural patterns in the data

• Example: document clustering
 – Group documents into groups
 – Idea: natural groups correspond to topics
Clustering: K-Means

• Motivation:
 – Examples are points in high dimensional space
 – Examples cluster together

• Approach:
 – Find a set of K clusters that best describe the data
 – Each cluster defined by centroid
 – Examples belong to cluster with closest centroid
Clustering: K-Means
Learning the Clusters

- **Learning**
 - Given K, find the best K clusters given the data
 - Assume Euclidean distance as similarity metric
 \[d(x_i, x_{i'}) = \left\| x_i - x_{i'} \right\|^2 \]
 - Minimize the cluster scatter
 \[C^* = \min_{C, \{m_k\}_{k=1}^K} \sum_{k=1}^K N_k \sum_{C(i)=k} \left\| x_i - m_k \right\|^2 \]
• Expectation-Maximization Algorithm
 – Expectation
 • Assign instances to closest clusters
 – Maximization
 • Compute mean of clusters based on assigned documents

• Recall
 – Minimizes the objective (reduces cluster scatter)
 – Guarantee: will converge to an optimal value
 – Note: optimal not necessarily global
• Model parameter
 – K: number of clusters

• Model parameter impacts bias/variance
 – Bias- smaller K biases towards popular clusters
 • Larger K, smaller bias
 – Variance- larger K means fewer clusters
 • Larger K, higher variance
 – Ideally- know the exact number of clusters
Gaussian Mixture Models

• K-means
 – Pro: simple, easy to learn
 – Con: clusters are the same geometric size
 • Just have a mean for each cluster

• Extension: Gaussian Mixture Models
 – Assume each cluster is a Gaussian distribution
 – Mean: center of the cluster
 – Variance: geometric size of cluster
 – Soft clustering in learning
 • Probability of instance from each cluster
• **Expectation**
 – Compute responsibility of clusters for examples

• **Maximization**
 – Compute new mean/variances based on example assignments

• GMM are subject of this afternoon’s lab
Other Types of Supervision

• Tutorial covered
 – Supervised (mostly)
 – Unsupervised

• Can combine supervised and unsupervised
 – Semi-supervised
 • Some labeled examples, many unlabeled examples
 – Partially-supervised
 • Incomplete information about labels
 – Semi-supervised clustering
 • Discover groups with some guidance
• **Survey Books in Machine Learning**
 – The Elements of Statistical Learning
 • Hastie, Tibshirani, Friedman
 – Pattern Recognition and Machine Learning
 • Bishop
 – Machine Learning
 • Mitchell

• **Questions?**

• **Contact info:**
 – mdredze@cs.jhu.edu www.dredze.com