Abstract
Driven by the goal of eradicating language barriers on a global scale, machine translation has solidified itself as a key focus of artificial intelligence research today. However, such efforts have coalesced around a small subset of languages, leaving behind the vast majority of mostly low-resource languages. What does it take to break the 200 language barrier while ensuring safe, high-quality results, all while keeping ethical considerations in mind? In this talk, I introduce No Language Left Behind, an initiative to break language barriers for low-resource languages. In No Language Left Behind, we took on the low-resource language translation challenge by first contextualizing the need for translation support through exploratory interviews with native speakers. Then, we created datasets and models aimed at narrowing the performance gap between low and high-resource languages. We proposed multiple architectural and training improvements to counteract overfitting while training on thousands of tasks. Critically, we evaluated the performance of over 40,000 different translation directions using a human-translated benchmark, Flores-200, and combined human evaluation with a novel toxicity benchmark covering all languages in Flores-200 to assess translation safety. Our model achieves an improvement of 44% BLEU relative to the previous state-of-the-art, laying important groundwork towards realizing a universal translation system in an open-source manner.
Biography
Angela is a research scientist at Meta AI Research in New York, focusing on supporting efforts in speech and language research. Recent projects include No Language Left Behind (https://ai.facebook.com/research/no-language-left-behind/) and Universal Speech Translation for Unwritten Languages (https://ai.facebook.com/blog/ai-translation-hokkien/). Before translation, Angela previously focused on research in on-device models for NLP and computer vision and text generation.
Abstract
While GPT models have shown impressive performance on summarization and open-ended text generation, it’s important to assess their abilities on more constrained text generation tasks that require significant and diverse rewritings. In this talk, I will discuss the challenges of evaluating systems that are highly competitive and perform close to humans on two such tasks: (i) paraphrase generation and (ii) text simplification. To address these challenges, we introduce an interactive Rank-and-Rate evaluation framework. Our results show that GPT-3.5 has made a major step up from fine-tuned T5 in paraphrase generation, but still lacks the diversity and creativity of humans who spontaneously produce large quantities of paraphrases.
Additionally, we demonstrate that GPT-3.5 performs similarly to a single human in text simplification, which makes it difficult for existing automatic evaluation metrics to distinguish between the two. To overcome this shortcoming, we propose LENS, a learnable evaluation metric that outperforms SARI, BERTScore, and other existing methods in both automatic evaluation and minimal risk decoding for text generation.
Biography
Wei Xu is an assistant professor in the School of Interactive Computing at the Georgia Institute of Technology, where she is also affiliated with the new NSF AI CARING Institute and Machine Learning Center. She received her Ph.D. in Computer Science from New York University and her B.S. and M.S. from Tsinghua University. Xu’s research interests are in natural language processing, machine learning, and social media, with a focus on text generation, stylistics, robustness and controllability of machine learning models, and reading and writing assistive technology. She is a recipient of the NSF CAREER Award, CrowdFlower AI for Everyone Award, Criteo Faculty Research Award, and Best Paper Award at COLING’18. She has also received funds from DARPA and IARPA. She is an elected member of the NAACL executive board and regularly serves as a senior area chair for AI/NLP conferences.