Seminars

Oct
17
Mon
David Chiang (University of Notre Dame) “Exact Recursive Probabilistic Programming with Colin McDonald, Darcey Riley, Kenneth Sible (Notre Dame) and Chung-chieh Shan (Indiana)” @ Hackerman Hall B17
Oct 17 @ 12:00 pm – 1:15 pm

Abstract

Recursive calls over recursive data are widely useful for generating probability distributions, and probabilistic programming allows computations over these distributions to be expressed in a modular and intuitive way. Exact inference is also useful, but unfortunately, existing probabilistic programming languages do not perform exact inference on recursive calls over recursive data, forcing programmers to code many applications manually. We introduce a probabilistic language in which a wide variety of recursion can be expressed naturally, and inference carried out exactly. For instance, probabilistic pushdown automata and their generalizations are easy to express, and polynomial-time parsing algorithms for them are derived automatically. We eliminate recursive data types using program transformations related to defunctionalization and refunctionalization. These transformations are assured correct by a linear type system, and a successful choice of transformations, if there is one, is guaranteed to be found by a greedy algorithm. I will also describe the implementation of this language in two phases: first, compilation to a factor graph grammar, and second, computing the sum-product of the factor graph grammar.
Biography
David Chiang (PhD, University of Pennsylvania, 2004) is an associate professor in the Department of Computer Science and Engineering at the University of Notre Dame. His research is on computational models for learning human languages, particularly how to translate from one language to another. His work on applying formal grammars and machine learning to translation has been recognized with two best paper awards (at ACL 2005 and NAACL HLT 2009). He has received research grants from DARPA, NSF, Google, and Amazon, has served on the executive board of NAACL and the editorial board of Computational Linguistics and JAIR, and is currently on the editorial board of Transactions of the ACL.
Oct
24
Mon
Fei Sha (University of Southern California) “Extracting Information from Text into Memory for Knowledge-Intensive Tasks” @ Hackerman Hall B17
Oct 24 @ 12:00 pm – 1:15 pm

Abstract

Modern learning architectures for natural language processing have been very successful in incorporating a huge amount of texts into their parameters. However, by and large, such models store and use knowledge in distributed and decentralized ways. This proves unreliable and makes the models ill-suited for knowledge-intensive tasks that require reasoning over factual information in linguistic expressions.  In this talk, I will give a few examples of exploring alternative architectures to tackle those challenges. In particular, we can improve the performance of such (language) models by representing, storing and accessing knowledge in a dedicated memory component.

This talk is based on several joint works with Yury Zemlyanskiy (Google Research), Michiel de Jong (USC and Google Research), William Cohen (Google Research and CMU) and our other collaborators in Google Research.

Biography

Fei is a research scientist at Google Research. Before that, he was a Professor of Computer Science at University of Southern California. His primary research interests are machine learning and its application to various AI problems: speech and language processing, computer vision, robotics and recently weather forecast and climate modeling.   He has a PhD (2007) from Computer and Information Science from U. of Pennsylvania and B.Sc and M.Sc in Biomedical Engineering from Southeast University (Nanjing, China).

Center for Language and Speech Processing