**Abstract**

Neural sequence generation systems oftentimes generate sequences by searching for the most likely se quence under the learnt probability distribution. This assumes that the mo st likely sequence\, i.e. the mode\, under such a model must also be the b est sequence it has to offer (often in a given context\, e.g. conditioned on a source sentence in translation). Recent findings in neural machine tr anslation (NMT) show that the true most likely sequence oftentimes is empt y under many state-of-the-art NMT models. This follows a large list of oth er pathologies and biases observed in NMT and other sequence generation mo dels: a length bias\, larger beams degrading performance\, exposure bias\, and many more. Many of these works blame the probabilistic formulation of NMT or maximum likelihood estimation. We provide a different view on this : it is mode-seeking search\, e.g. beam search\, that introduces many of t hese pathologies and biases\, and such a decision rule is not suitable for the type of distributions learnt by NMT systems. We show that NMT models spread probability mass over many translations\, and that the most likely translation oftentimes is a rare event. We further show that translation d istributions do capture important aspects of translation well in expectati on. Therefore\, we advocate for decision rules that take into account the entire probability distribution and not just its mode. We provide one exam ple of such a decision rule\, and show that this is a fruitful research di rection.

\n**Biography**

I am an *assistant
professor* (UD) in natural language processing at the Institute for Logic\, Language and Computation where
I lead the Probabilistic Language L
earning group.

My work concerns the design of models and algor ithms that learn to represent\, understand\, and generate language data. E xamples of specific problems I am interested in include language modelling \, machine translation\, syntactic parsing\, textual entailment\, text cla ssification\, and question answering.

\nI also develop techniques to approach general machine learning problems such as probabilistic inferenc e\, gradient and density estimation.

\nMy interests sit at the inter section of disciplines such as statistics\, machine learning\, approximate inference\, global optimization\, formal languages\, and computational li nguistics.

\n\n

DTSTART;TZID=America/New_York:20210419T120000 DTEND;TZID=America/New_York:20210419T131500 LOCATION:via Zoom SEQUENCE:0 SUMMARY:Wilker Aziz (University of Amsterdam) “The Inadequacy of the Mode in Neural Machine Translation” URL:https://www.clsp.jhu.edu/events/wilker-aziz-university-of-amsterdam/ X-COST-TYPE:free X-TAGS;LANGUAGE=en-US:2021\,April\,Aziz END:VEVENT END:VCALENDAR