ECE 520.651 Random Signal Analysis

Homework # 11

1. (IV.F.16 from the Poor book) Let $\theta > 0$ be an unknown parameter, and Y_1, \ldots, Y_n be a sequence of \mathbb{R}-valued i.i.d. random variables with common density

$$p_\theta(y) = \begin{cases} \frac{e^{-\frac{y^M}{\theta^M}}}{(2\theta)^M M!} & \text{if } y \geq 0 \\ 0 & \text{otherwise.} \end{cases}$$

where M is a known positive integer.

(a) Find the ML estimate of θ based on Y_1, \ldots, Y_n.
(b) Compute the bias and variance of the estimate from 1a.
(c) Compute the Cramér-Rao bound on the variance of unbiased estimates of θ.
(d) Is the ML estimate of part 1a consistent? Is it efficient?

2. (IV.F.17 from the Poor book) Let Y_1 and Y_2 be jointly Gaussian, each with zero mean, unit variance and an unknown correlation coefficient $\rho = E[Y_1 Y_2]$.

(a) Find the equation for the ML estimate of ρ based on (Y_1, Y_2).
(b) Compute the Cramér-Rao bound for the variance of unbiased estimates of ρ.

3. (IV.F.18 from the Poor book) Suppose that we observe

$$Y_k = N_k + \theta s_k, \quad k = 1, \ldots, n,$$

where $\mathbf{N} = [N_1 \ldots N_n]^T$ is a zero-mean Gaussian random vector with $n \times n$ covariance matrix $\mathbf{\Sigma}$, s_1, \ldots, s_n is a known signal sequence, and $\theta \in \mathbb{R}$ is a nonrandom parameter.

(a) Find the ML estimate of θ based on Y_1, \ldots, Y_n.
(b) Compute the bias and variance of the estimate of 3a.
(c) Compute the Cramér-Rao bound for unbiased estimates of θ and compare with your result from 3b.
(d) What can be said about the consistency of $\hat{\theta}_{ML}$ as $n \to \infty$? Specifically, does consistency follow if

$$
\frac{1}{n} \sum_{k=1}^{n} s_k^2 > a \quad \forall \ n \quad \text{and} \\
\lambda_{\min}(\Sigma^{-1}) > b \quad \forall \ n,
$$

for some positive constants a and b, where $\lambda_{\min}(A)$ denotes the smallest eigenvalue of a matrix A?

4. (IV.F.19 from the Poor book) Suppose $\theta > 0$ is a nonrandom parameter and we observe a sequence Y_1, \ldots, Y_n given by

$$
Y_k = \sqrt{\theta} N_k \quad k = 1, \ldots, n,
$$

where $N = [N_1 \ldots N_n]^T$ is a zero-mean Gaussian random vector with a positive definite covariance matrix Σ.

(a) Find the ML estimate of θ based on Y_1, \ldots, Y_n.

(b) Show that the estimate of 4a is unbiased.

(c) Compute the Cramér-Rao bound for unbiased estimates of θ.

(d) Compute the variance of the estimate of 4a and compare with the CRLB from 4c.

5. (IV.F.20 from the Poor book) Consider the observation model

$$
Y_k = \sqrt{\theta} s_k R_k + N_k, \quad k = 1, \ldots, n,
$$

where $s_1 \ldots, s_n$ is a known signal sequence, $N_1, \ldots, N_n, R_1, \ldots, R_n$ are i.i.d. $\mathcal{N}(0, 1)$ random variables, and $\theta > 0$ is an unknown nonrandom parameter.

(a) Find the likelihood equation for estimating θ from Y_1, \ldots, Y_n.

(b) Find the Cramér-Rao bound on the variance of unbiased estimates of θ.

(c) Find the MLE explicitly for the special case when s_1, \ldots, s_n is a sequence of ± 1’s.

(d) Compute the bias and variance of your estimate from 5c and compare with the CRLB from 5b.