Vine Parsing and Minimum Risk Reranking for Speed and Precision

Markus Dreyer
David A. Smith
Noah A. Smith

Johns Hopkins University
Design Goals

Speed
Precision
U-best unlabeled parses

$U \times L$-best labeled parses

CoNLL-2006 • M. Dreyer, D. A. Smith, N. A. Smith • Vine Parsing and Minimum Risk Reranking
Split-Head assumption
Projectivity
Vine Grammar

Eisner and N. Smith (2005)
According to estimates, some of the rule changes would cut filings by more than a third.
According to estimates, some changes would cut more filings by the rule than a third. $b = 4$

(from the Penn Treebank)
According to estimates, changes to the rule would cut filings by more than a third. (from the Penn Treebank)
According to estimates, some changes would cut filings by more than a third. (from the Penn Treebank)
(from the Penn Treebank)
Different bounds for left and right children

Speed - Accuracy Tradeoff

Choose bounds:
90% of original dependencies untouched

(from the Penn Treebank)
Reranker

Minimum Risk Training

Deterministic annealing

D. Smith and Eisner (2006)

CoNLL-2006 • M. Dreyer, D. A. Smith, N. A. Smith • Vine Parsing and Minimum Risk Reranking
Labeled

Japanese (82.9), Portuguese (75.3), Bulgarian (74.8), Chinese (71.6), German (71.0)

Median 67.6

Unlabeled

Japanese (86.0), Portuguese (82.4), Bulgarian (82.0), Swedish (79.5), Chinese (77.6)

Median 77.5
Summary

- Parsing constraints
- Linear-time inference and decoding
- Minimum Risk reranking
- High precision, mediocre recall

Future Work

- Better estimation
- Better labeler (label bigrams)
- More fine-grained parsing constraints (length bounds given head)