Review Chapter 4, Sections 4.1-4.2, from Stark and Woods and pages 47-60 from Prof. Papamarcou’s notes before starting the homework.

1. Let $\Omega = [0,1)$, $F = B([0,1))$ and P be the Lebesgue measure. Determine whether the following events are mutually independent:

 $A = \left[0, \frac{1}{2}\right)$

 $B = \left[0, \frac{1}{4}\right) \cup \left[\frac{1}{2}, \frac{3}{4}\right)$

 $C = \left[0, \frac{1}{8}\right) \cup \left[\frac{1}{4}, \frac{3}{8}\right) \cup \left[\frac{1}{2}, \frac{5}{8}\right) \cup \left[\frac{3}{4}, \frac{7}{8}\right)$

2. Does your construction of X_1 and X_2 in Homework #2, Problems 3 and 4 respectively, result in independent random variables? If not, redefine X_2 so that it still is uniformly distributed as required, but is also independent of X_1. Demonstrate that X_1 and X_2 are independent by computing the conditional CDF of X_2 given $X_1 = 0, X_1 = 1, X_1 = 2$ and $X_1 = 3$.

3. For any three events A, B and C, show that

 $$P(A \cap C|B) = P(A|B) \times P(C|B) \quad \text{if and only if} \quad P(A|B \cap C) = P(A|B).$$

 In this case, we say that A and C are conditionally independent given B.

 (a) Is independence of A and C sufficient to make them conditionally independent?

 (b) Is independence necessary for them to be conditionally independent?

 If your answer is “yes,” prove the assertion; if it is “no,” provide a counterexample.

Start reading Chapter 3 from Stark and Woods after finishing the homework.