1. Problem 1.10 from Stark and Woods.

2. Problem 1.13 from Stark and Woods.

3. If a field \mathcal{F} contains sets A and B, show that \mathcal{F} also contains the sets $A \setminus B$ and $A \triangle B$.

4. Show that if a collection \mathcal{F} of subsets of Ω is closed under complementation and \textit{countable} unions, it is also closed under \textit{countable} intersections.

5. Let \mathcal{F} be a σ-field of subsets of Ω and fix a set $B \in \mathcal{F}$. Show that $\mathcal{G} = \{ A \cap B : A \in \mathcal{F} \}$ is a σ-field of subsets of B.

\mathcal{G} is called the “\textit{restriction of }\mathcal{F}\text{ \textit{to } }B\text{,” or “}\mathcal{F} \text{ \textit{restricted to } }B\text{.”}