PRONUNCIATION AMBIGUITY VS PRONUNCIATION VARIABILITY IN SPEECH RECOGNITION

Murat Saraclar and Sanjeev Khudanpur

Center for Language and Speech Processing
Johns Hopkins University, Baltimore, MD 21218-2686
{murat,sanjeev}@clsp.jhu.edu

ABSTRACT

It is widely acknowledged that pronunciations in spontaneous speech differ significantly from citation form. For this reason, pronunciation modeling has received considerable attention in recent automatic speech recognition literature. Most of the attention however has focused on describing an alternate pronunciation as a different sequence of phonetic units using the same inventory of phones which describe canonical pronunciations. Analysis of manual phonetic transcription of conversational speech reveals a large number (>20%) of cases of genuine ambiguity: instances where human labelers disagree on the identity of the surface form. In this paper, we investigate and characterize the acoustic evidence in the context of this ambiguity. We show that when a pronunciation change occurs, it is often the case that neither the canonical nor the alternate phone represent the acoustics very well. Based on this analysis, two methods for accommodating pronunciation ambiguity are developed. The first method attempts to resolve the ambiguity by separately modeling each baseform/surface-form pair. The second method treats the surface form as a hidden variable and “averages out” the ambiguity.

1. INTRODUCTION

Acoustic modeling based on phonetic units relies on having an accurate phonetic representation of words. However, the high degree of pronunciation change encountered in spontaneous speech makes such a representation impossible if one insists on keeping the phonetic inventory constant. Most of the time the change is only partial; a phone is not completely deleted or substituted and the effects of this partial change can be found in its environment. An analysis of a portion of the Switchboard corpus labeled by linguists at the phonetic level reveals that the disagreement between human labelers is quite high. This suggests that pronunciation change sometimes yields ambiguous representations when projected onto a limited phonetic inventory. In this paper we differentiate between two types of pronunciation change: pronunciation variation, where the surface form can be identified and pronunciation ambiguity where even human transcribers cannot agree on the identity of the surface form.

Most of the work on pronunciation modeling tries to predict changes in pronunciation so that words are allowed to have alternate phonetic representations. This sort of explicit pronunciation modeling combined with context-dependent acoustic modeling can only partially account for the pronunciation variation in conversational speech as suggested by moderate gains in word error rate reported by various researchers. As opposed to this “linear phonology” approach, “nonlinear” or autosegmental phonological models allow for representations based on asynchronous features and are not constrained by the phonetic inventory. One such model [2, 3] given by Deng is a feature-based phonological model that yields a feature overlapping pattern instead of a phonetic representation. Finke [4] recently proposed using “attribute instances” which include articulatory features, stress etc. as acoustic modeling units and a pronunciation model that predicts variation of these instances. This instance based representation provides a tighter coupling of the pronunciation model and the acoustic model.

In this paper we analyze the intrinsic ambiguity of phone level transcriptions and propose methods within the “linear phonology” framework to overcome the problems caused by this ambiguity. An analysis of the relationship between acoustics and phonemic/phonetic representations is used to explain the recognition results of two methods for improving acoustic modeling using pronunciation modeling. One method extends the units used in acoustic modeling to baseform/surface-form pairs, attempting to resolve the ambiguity by enlarging the inventory and taking a step towards a “tighter coupling” between the acoustic models and the pronunciation model. Another method models the pronunciation change at the state level so that partial pronunciation changes can be covered. This method also provides more accurate acoustic probabilities for the baseform by keeping the surface form as a hidden variable and summing over all alternate pronunciations of a baseform. This approach handles ambiguity by averaging instead of disambiguating.

This paper is organized as follows. In Section 2 we present acoustic evidence for genuine pronunciation ambiguity in conversational speech. This ambiguity is further quantified in the interlabeler agreement statistics and in our efforts to obtain accurate phonetic transcriptions by automatic means, as discussed in Section 3. Finally, speech recognition experiments which accommodate this ambiguity in pronunciation modeling are presented in Section 4.

This work was supported by DoD Grant Nq MDA90499C3525
2. ACoustIC EVIDENCE OF AMBIGUITY

We use the Switchboard corpus, a collection of casual telephone conversations between American English speakers, to study pronunciation changes in conversational speech. A portion (~4 hours, ~100K phones) of Switchboard has been phonetically labeled, and it is on this portion of the corpus that our investigations are based. Furthermore, about 30 minutes of this labeled data is in the “test” portion of the corpus, while a little over 3 hours is in the acoustic training set. Model estimation in this section is on the training portion of the hand labeled corpus and evaluation is done on the test portion where appropriate.

In order to understand the nature of pronunciation ambiguity and to discover ways of modeling it, we need to investigate the relationship between acoustics and baseform/surface-form representations.

Consider an occurrence of the word AND which has the baseform /æ n d/ and is labeled as the surface form [ɛh n d]. In this example, /æ/ is realized as [ɛh], forming the baseform/surface-form pair (æ,eh). What do the acoustics of this pair look like? If the acoustics are sufficiently similar to those of an [ɛh], this can be considered as pronunciation variation, otherwise this is a case of pronunciation ambiguity. In any case, how should this pair be modeled? Pronunciation variation may perhaps be dealt with by adding [ɛh n d/ as a second dictionary entry for AND, whereas pronunciation ambiguity requires other solutions. In order to answer these questions we treat the baseform/surface-form pair, e.g., (æ,eh), as a unit and analyze the acoustics of such units. The analysis proceeds as follows.

The baseform transcriptions `B and surface form transcriptions S (hand labels) of the phonetically labeled training data are first aligned to obtain “pair transcriptions” `BS. Three sets of context independent acoustic phonetic models are then estimated from this set of transcriptions.
P_{X|BS}(\cdot | BS) : estimated from the baseform transcriptions;
P_{X|S}(\cdot | S) : estimated from the surface form transcriptions;
P_{X|BS, S}(\cdot | BS, S) : estimated from the pair transcriptions.

2.1. Acoustics of Alternate Realizations

Our analyses begin by visualizing how the average acoustic features corresponding to an instance of a baseform phoneme /b/ compare, when it is realized as a surface-form phone [s], to those of the baseform /b/ and the surface-form [s]. Note that since we estimate single Gaussian output densities for each model P_{X|BS}(\cdot | BS), the model mean µ_{BS}(b,s) may also be interpreted as a typical acoustic feature when a /b/ is realized as an [s]. We therefore focus attention on the relative location of µ_{BS}(b,s) with respect to µ_{BS}(s), the model for a canonical /b/, and µ_{BS}(s), the model for a realization [s].

These means are 39-dimensional vectors (the output of the MF-PLP front-end, and Δ, ΔΔ coefficients) which makes visualization difficult. However, since three points in a Euclidean space form a plane, we can find the plane containing the three means and plot them in two-dimensions.

In order to extend this visualization from a single triple for a particular choice of (b,s), say (æ,eh), to a set of triples, we map two points of each triple to two fixed points in the plane and scale the coordinates for the third point such that relative distances between the three means are preserved. In particular, µ_{BS}(b) is mapped to the origin, µ_{BS}(s) is mapped to (1,0) on the x-axis, and µ_{BS}(s) to the positive y-half-plane while preserving relative distances. By plotting model means for all triples in this manner we obtain a plot that gives us the relative location of the three sets of points for different (b,s) pairs. The plot in the center in Figure 1 is obtained in this manner.

![Figure 1: Comparison of Average Acoustics](image)

Figure 1: Comparison of Average Acoustics

To help interpret the results of the plot generated as described above, we also substitute µ_{BS}(b,s) with µ_{BS}(b) for each pair (b,s) and obtain the plot to the left in Figure 1. This corresponds to the location of the average acoustic of a /b/ realized as a [s]. Similarly we obtain the location of the average acoustics µ_{BS}(s,s) of an /s/ realized as a [s]. These are plotted on the right in Figure 1. The plot on the left shows that the acoustics of a /b/ realized as a [s] are all crowded around the model mean, which is at (0,0), and similarly for an /s/ realized as an [s] as shown by the plot on the right.

Compared to these canonical pronunciations, things are much more variable when a pronunciation change occurs. Even when a realization is labeled as an [s] by a human labeler, the acoustics are much more widely scattered around the model mean for an [s]. Furthermore, note that the spread is not isotropic: there is a distinct bias in the surface acoustics towards the acoustics of the canonical phoneme. In many instances, the acoustics are actually closer to model for /b/ than the model for [s]!

Two conclusions supported by these plots are that (i) there is indeed ambiguity in the surface forms and that (ii) the acoustics of a phoneme /b/, when realized as a phone [s], lie somewhere between either of them.

2.2. Acoustic Likelihood of Alternate Realizations

In order to see how best to model the acoustics of the (b,s) pair, we compare the likelihood assigned to the acoustics by the three models discussed above. For each segment of the acoustics, both in the training set and the 30 minutes of test data, we have the canonical phonemic transcription, the manual phonetic labels, and their alignment (pair labels). The inventories of the canonical and manual transcriptions are identical. In light of this, we compute likelihoods with four model-transcription combinations: (i) the canonical pronunciations B with models P_{A|BS}. (ii) the
manual phone labels \hat{S} with models $P_{A|B}^3$; (iii) the manual phone labels \hat{S} with models $P_{A|B}$ and (iv) the pair labels \hat{B} with models $P_{A|B}^S$.

If we select the instances when a pronunciation change is labeled to have taken place, we find the total likelihoods ordered as

$$P_{A|B,S}(|\hat{B}S|) > P_{A|B}(|\hat{S}|) > P_{A|B}(|\hat{S}|) > P_{A|B}(|\hat{B}|).$$

Figure 2 summarizes the results of computing these likelihoods for instances in the training data and the test data when a baseform is substituted with another phone.

3. AUTOMATIC PHONE LEVEL TRANSCRIPTION OF ACOUSTIC DATA

It seems clear from the previous section that while there is ambiguity in the acoustics when pronunciations change from their canonical forms, training acoustic models with joint knowledge of the canonical and surface form transcriptions may be of significant value. The amount of available hand-labeled phone transcriptions for conversational speech is limited, and certainly not enough to build a state-of-the-art state-clustered cross-word triphone ASR system. The phonetic hand-labeling process is time consuming and expensive which makes automatic methods for phone transcription desirable.

Our method, described in [7], uses the hand-labeled data as bootstrap material. First an initial pronunciation model and an acoustic model are estimated using the manual transcriptions. Starting with the canonical transcription of the entire acoustic training set, the pronunciation model is used to generate pronunciation networks representing possible phonetic realizations of each training utterance. The most likely phone sequence through each network is chosen via Viterbi alignment using existing acoustic models, yielding a surface form transcription for the entire training set. A new pronunciation model is then estimated using these surface form transcriptions and the above process of network generation and alignment is repeated with this new pronunciation model, giving the final surface form transcriptions.

The quality of the automatic transcriptions is measured by comparing them to the manual transcriptions. This comparison gives a phone error rate (PER) of 26.6% measured on the test set.

At this point it seems natural to ask if the accuracy of this transcription can be further improved upon or if the inherent ambiguity in the acoustics is limiting further improvement in phone recognition. It is also interesting to compare the automatic transcription with the performance of human labelers. A small portion (~2000 phones) of the hand-labeled corpus was transcribed in common by two transcribers and we use this portion to assess interlabeler agreement between human labelers and between our automatic transcription and the human labelers.

Greenbergootnote{The symbol set used by the transcribers is more detailed than the phone set used in our baseform dictionary (PronLex). Since the rest of our models use the PronLex phone set, we map the actual labels down to this set.} reports interlabeler agreement on this corpus to be "ca. 75%-80%" [6]. Since the PER using automatic transcription is not so far from the mismatch between the human labelers, it is of interest to examine the performance of the automatic transcriptions with respect to both labelers. This comparison requires a three-way alignment and we have done this by hand. An actual example segment of this alignment for the word PARENTS and the overall proportion of each type of agreement is given in Table 1.

Table 1: Example Alignment Segment and Proportion of Agreement Types

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>Agreement</th>
<th>Overall Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>p</td>
<td>✓</td>
<td>✓✓✓</td>
</tr>
<tr>
<td>eh</td>
<td>ae</td>
<td>✓</td>
<td>✓✓✓</td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>✓</td>
<td>✓✓✓</td>
</tr>
<tr>
<td>n</td>
<td>en</td>
<td>✓</td>
<td>✓✓✓</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>✓</td>
<td>✓✓✓</td>
</tr>
<tr>
<td>s</td>
<td>s</td>
<td>✓</td>
<td>✓✓✓</td>
</tr>
</tbody>
</table>

Total Agreement: 75.3% 74.3% 72.2%

The combination provides insight into the case where no change is made to the conventional acoustic model training procedure, but a pronunciation model is used to create dictionary entries for alternate pronunciations.
automatic and hand transcriptions do not completely overlap with those between the transcribers. It also shows that there is some room for further improvement of the automatic transcription process described here.

The PER between automatic and human transcriptions jumps to >60% in the regions of pronunciation ambiguity, i.e. instances where the human transcribers disagree. From a modeling point of view this high error rate is a good reason to keep the surface form representation as a hidden variable during estimation and decoding, in order to alleviate the effects of ambiguity.

4. SPEECH RECOGNITION EXPERIMENTS

Two sets of speech recognition experiments have been conducted to evaluate the performance of the acoustic models that are designed to handle pronunciation ambiguity. Slightly less than 2 hours of speech from the Switchboard corpus make up the test set, of which a 30 minute portion is also phonetically labeled. The baseline acoustic models are state-clustered cross-word triphones trained on canonical phonetic transcriptions of about 60 hours of speech. We use the new acoustic models for rescoring lattices generated by the baseline models. Without any pronunciation modeling, the best path in the lattice has a WER of 39.4%.

In the first set of experiments, we use, for a pronunciation model, an explicit listing of the canonical and alternate pronunciations of words in the recognition dictionary [see [1]]. We then compare the three models: PAIB and PAIS, which differ in the transcriptions on which they were trained but use the same phonetic inventory, and PAIB,S, which is trained on the pair transcriptions. The test set, in this case, is only the phonetically annotated portion of the larger test set. The word error rate (WER) measured against the word level transcriptions and phone error rate (PER) measured against both the baseform transcription B and surface form transcription S (hand labeled) are presented in Table 2.

In the second set of experiments, we use a recently introduced method for pronunciation modeling called state level pronunciation model or SLPM [7], which accommodates alternate surface-form realizations of a phoneme by allowing the HMM state of the model of the baseform phoneme to share output densities with models of the alternate surface form realizations. The SLPM can effectively "merge" two sets of acoustic models, as described in detail in [7].

We contrast merging the baseline models PAIB with the surface-form trained models PAIS as described in [7], with the alternative of merging with PAIB,S, which were shown to better model the acoustics in Section 2. Table 3 shows the results of these experiments.

Note that pronunciation modeling techniques described in [1], which account for pronunciation variability but not pronunciation ambiguity, improve the overall WER from 39.4% to 38.9%. Accounting further for the ambiguity leads to more significant improvements, as seen on the last lines of both tables.

5. CONCLUDING REMARKS

We have presented acoustic evidence which demonstrates the prevalence of ambiguity in the identity of phonetic segments in spontaneous speech. We have shown how this inherent ambiguity makes the notion of phonetic transcription, be it manual or automatic, a difficult one. We have presented means for automatically generating reasonably accurate phonetic transcriptions and a method for using them to train models which improve speech recognition accuracy by accommodating pronunciation ambiguity. A 1.7% WER improvement on Switchboard is demonstrated.

6. REFERENCES

