Multilingual Dependency Parsing

Keith Hall
JHU CLSP
Outline

- Two-stage Non-projective Dependency Parser (tree structure = unlabeled dependencies)
 - algorithm
 - models
 - training
- Empirical Results on 8 languages
- Applications
 - Speech Reconstruction
 - Low-density language parsing
Parser Reranking

- Rerank trees output by parser
- Based on discriminative modeling techniques
- Often, modeled as “best vs. rest”
 - Constituency Structures (Collins ICML00, Charniak & Johnson ACL05)
 - LFG (Riezler et al. ACL02)
Dependency Reranker

- **McDonald** *(ACL05)*
 - Used k-best Eisner algorithm to generate training data
 - Trained large margin classifier
 - Multi-label classification problem (not best vs. rest)
 - Also presented edge-factored models
Reranking and OT

c.f. Stevenson & Smolensky
Ch. 19: “Optimality in Sentence Processing”
Toward a calculus of the mind/brain: Neural network theory, optimality, and universal grammar

(9) John put the candy on

a. the table.

b. # the table into his mouth.

<table>
<thead>
<tr>
<th>PP Argument/NP Adjunct</th>
<th>Ob-HD</th>
<th>Assign-θ</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>John put the candy on</td>
<td>VP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[the table.]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[# the table into[his</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mouth.]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

John put the
candy on

the table.

*NP

*ε
Two Stage Parser

- k-best MST algorithm
 - Discriminatively trained
 - Efficient $O(n^2)$
- Reranker
 - Discriminatively trained
- Fast: $O(k \cdot n^2)$
 - Training is slow
MST Parsing

- Maximum Spanning Tree
 best dependency tree
 natural similarity

- $s(T) = \sum_i s(g_i \rightarrow w_i)$

- Edge-factored constraint
 $s(a \rightarrow b)$ is independent of $s(c \rightarrow b)$

- $s()$ can use all other information from the input
 - linear order $s(a \rightarrow b)$ (a comes before b)
 - neighboring nodes $s(a \rightarrow b)$ (c follows child b)
k-best MST

- Efficient version of Edmonds/Chu-Liu algorithm (Edmonds algorithm used by McDonald et al. EMNLP05)
- Based on Camerini et al. 1980
- Finding “next” best tree is key to efficiency
- General setup is based on constrained graph
k-best MST setup
k-best MST setup

\[G = \{E,V\} = \]

Graph

ROOT

a

b

c
k-best MST setup

\[G = \{E, V\} = \]

Graph

Branching

\[Y = \]

![Diagram of a graph with nodes a, b, and c, and edges connecting them. A branching with nodes a and c, and edge b connecting them.]
k-best MST setup

Graph

Branching

Exclusion Set

\[G = \{E, V\} = \]

\[Y = \]

\[Z = \]
k-best MST setup

Graph

\[G = \{E,V\} = \]

Branching

\[Y = \]

Exclusion Set

\[Z = \]

Constrained Graph

\[G_{Y,Z} = \]
k-best MST setup

- Constrained graph $G_{Y,Z}$
 - Y must be part of MST of $G_{Y,Z}$
 - Z cannot be part of MST ...

- iff A is an MST of G
 and $Y \subseteq A \subseteq E - Z$
 then A is an MST of $G_{Y,Z}$

- Solving constrained problem leads to unconstrained solution (used for k-best)
MST example

M (graph)

Root

C (branching)

a → b → c
MST example

M (graph)

C (branching)

Root

a

b

c

a
MST example

M (graph) C (branching)

Root

b

a c

a
MST example

M (graph)

Root

a

b

c

C (branching)

b

a
MST example

\[M \] (graph)

Root

\[b \]

\[a \rightarrow c \]

\[C \] (branching)

\[a \rightarrow \]

\[b \rightarrow a \]
MST example

M (graph)

Root

- b
- a
- c

C (branching)

- d
- b
- a
MST example

M (graph)

Root

d c

C (branching)

b a

d

d
Next Best

- Given best tree A and graph $G_{Y,Z}$
- An edge e exists in A:
 - when removed from A and from the graph (i.e., $G_{Y,\{Z \cup e\}}$)
 best tree of $G_{Y,\{Z \cup e\}}$ is the next best of $G_{Y,Z}$
- Branching C used to find e
Third Best

- $G_{Y\cup \{Z \cup e\}}$ - graph without e
 - MST is next best of $G_{Y,Z}$
 - What about the “next” of that graph

- $G_{\{Y \cup e\},Z}$ - graph with e
 - MST is best of $G_{Y,Z}$
 - What about the “next” of this graph

- One of these is the third best
k-best MST

- Priority queue of trees
- Use constrained graph of get partition of solution set

```
... 1 2 3 ...
```

```
1
2
3
...
```
k-best MST

- Priority queue of trees
- Use constrained graph of get partition of solution set
k-best MST

- Priority queue of trees
- Use constrained graph of get partition of solution set
k-best MST

- Priority queue of trees
- Use constrained graph of get partition of solution set
k-best MST

- Priority queue of trees
- Use constrained graph of get partition of solution set

\[\text{i}^{\text{th}} \text{ best} \]

next of \(G_{Y, \{Z \cup e\}} \)

next of \(G_{\{Y \cup e\}, Z} \)
k-best MST

- Priority queue of trees
- Use constrained graph of get partition of solution set
Edge-factored Models

- Node-Type
- Branch
- Distance
- Inside/Outside
- Edge
- “Extra” feats (from CoNLL data)

```
ROOT
share
two
house
a
almost
devoid
of
furniture
```
Edge-factored Models

- Node-Type
- Branch
- Distance
- Inside/Outside
- Edge
- “Extra” feats
 (from CoNLL data)
Edge-factored Models

- Node-Type
- Branch
- Distance
- Inside/Outside
- Edge
- “Extra” feats
 (from CoNLL data)

ROOT
share
two
house
a
devoid
almost
of
furniture

two
share
a
devoid
almost

almost
devoid
of

furniture

ROOT

ROOT
Edge-factored Models

- Node-Type
- Branch
- Distance
- Inside/Outside
- Edge
- “Extra” feats (from CoNLL data)
Edge-factored Models

- Node-Type
- Branch
- Distance
- Inside/Outside
- Edge
- “Extra” feats (from CoNLL data)
Edge-factored Models

- Node-Type
- Branch
- Distance
- Inside/Outside
- Edge
- “Extra” feats (from CoNLL data)

```
two share a house almost devoid of furniture.
```
Edge-factored Models

- Node-Type
- Branch
- Distance
- Inside/Outside
- Edge
- “Extra” feats (from CoNLL data)

ROOT

two
share
house
devoid
almost
of
furniture

almost
devoid
of
furniture
Edge-factored Models

- Node-Type
- Branch
- Distance
- Inside/Outside
- Edge
- “Extra” feats (from CoNLL data)

ROOT
two
share
house
almost
devoid
of
furniture
.devoid

ROOT

. // End of sentence
Edge-factored Models

- Node-Type
- Branch
- Distance
- Inside/Outside
- Edge
- “Extra” feats (from CoNLL data)
Training Edge-factored Models

<table>
<thead>
<tr>
<th>Child</th>
<th>Parent</th>
<th>Correct</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>two</td>
<td>ROOT</td>
<td>0</td>
<td>RtDt, Y,N,5,</td>
</tr>
<tr>
<td>two</td>
<td>share</td>
<td>1</td>
<td>VbDt, Y,N,5,</td>
</tr>
<tr>
<td>two</td>
<td>a</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>share</td>
<td>ROOT</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>share</td>
<td>two</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>share</td>
<td>a</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- n^2 examples/sentence
- Large training sets
Reranking Models

- MST score
- Sibling
- Valency (count) & Subcategorization (frames)
- Ancestor - grandparent, great-grandparent
- Edge - neighbors or completed subtrees
- Branch Factor (ratio and boolean)
- Depth - height of tree
- Heavy - Number of dominated nodes per type
 (Charniak & Johnson ACL05)
Training Reranker

- $k \times \text{num. training sentences}$
- Jack-knife training
 - use entire training set
 - no bias towards training

<table>
<thead>
<tr>
<th>Sent/Tree</th>
<th>Accuracy</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>sent 1, tree 1</td>
<td>89%</td>
<td>67,R,</td>
</tr>
<tr>
<td>sent 1, tree 2</td>
<td>85%</td>
<td>75,R,</td>
</tr>
<tr>
<td>sent 1, tree 3</td>
<td>55%</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>sent 1, tree k</td>
<td>53%</td>
<td></td>
</tr>
<tr>
<td>sent 2, tree 1</td>
<td>88%</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>sent 2, tree k</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Common Modeling Paradigm

<table>
<thead>
<tr>
<th>Example</th>
<th>Score</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>set 1, ex. 1</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>set 1, ex. 2</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>set 1, ex. 3</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>set 2, ex. 1</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>set 2, ex. 1</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>Example</th>
<th>Score</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>set 1, ex. 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>set 1, ex. 2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>set 1, ex. 3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>set 2, ex. 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>set 2, ex. 1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

- **Best versus the rest (reranking)**
 - Collins ICML00

- edge-factored and reranking models use the same optimization routine
Inference Functions

- MST Parser Scores:

\[s(w_i, w_j) = p_\theta(y_i \in Y_+ | Y_e) \]

\[y_i \in Y_+ \iff e(w_i, w_j) = 1 \]

- Reranker objective:

\[\arg \max_i p_\theta(y_i \in Y_+ | Y_e) \]
MaxEnt Training

- Given conditional distribution

\[
p_\theta(y_i \in Y_+|Y_e)
\]

- Match observations

\[
E_{p_\theta}(f) = E_{\hat{p}}(f)
\]

- Log-linear form

\[
p_\theta(y_i \in Y_+|Y_e) = \frac{1}{Z} \exp^{\theta \cdot f(y_i)}
\]

\[
Z = \sum_{j \in Y_e, j \neq i} \exp^{\theta \cdot f(y_j)}
\]
Too Much Data

- edge-factored model training can result in large numbers of “examples”

- Bagging approach (Breiman):
 - Sub-sample (with replacement) n sets
 - At inference combine n classifiers
 - Good for high-variance data-sets

- Our approach:
 - Partition data into n disjoint subsets
 - At inference combine n classifiers
Empirical Evaluation

- 7 Languages from CoNLL-X 2006 shared task on dependency parsing
- + English
- No language-specific training (other than treebanks)
- Some morphological analysis provided (coarse POS-tags are most useful)
- Preliminary reranking results on 3 languages
k-best Oracle Rates

<table>
<thead>
<tr>
<th>Language</th>
<th>Best Reported</th>
<th>$k = 1$</th>
<th>$k = 10$</th>
<th>$k = 50$</th>
<th>$k = 100$</th>
<th>$k = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>79.34</td>
<td>77.61</td>
<td>80.41</td>
<td>81.86</td>
<td>82.65</td>
<td>84.15</td>
</tr>
<tr>
<td>Czech</td>
<td>87.30</td>
<td>84.08</td>
<td>88.92</td>
<td>91.12</td>
<td>91.94</td>
<td>93.62</td>
</tr>
<tr>
<td>Danish</td>
<td>90.58</td>
<td>89.12</td>
<td>92.89</td>
<td>94.79</td>
<td>95.29</td>
<td>96.59</td>
</tr>
<tr>
<td>Dutch</td>
<td>83.57</td>
<td>81.05</td>
<td>87.43</td>
<td>90.30</td>
<td>91.28</td>
<td>93.12</td>
</tr>
<tr>
<td>English</td>
<td>92.22</td>
<td>88.52</td>
<td>92.15</td>
<td>93.95</td>
<td>94.49</td>
<td>95.76</td>
</tr>
<tr>
<td>German</td>
<td>90.38</td>
<td>87.48</td>
<td>92.27</td>
<td>94.15</td>
<td>94.93</td>
<td>96.01</td>
</tr>
<tr>
<td>Portuguese</td>
<td>91.36</td>
<td>89.38</td>
<td>92.72</td>
<td>94.44</td>
<td>95.05</td>
<td>96.17</td>
</tr>
<tr>
<td>Swedish</td>
<td>89.54</td>
<td>86.50</td>
<td>91.20</td>
<td>93.37</td>
<td>93.83</td>
<td>95.42</td>
</tr>
<tr>
<td>Language</td>
<td>Best Reported</td>
<td>Accuracy k-best MST and Reranker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabic</td>
<td>79.34</td>
<td>1-best 77.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50-best 77.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100-best 78.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>500-best 77.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech</td>
<td>87.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danish</td>
<td>90.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutch</td>
<td>83.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>92.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>90.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portuguese</td>
<td>91.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swedish</td>
<td>89.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Table is incomplete at time of submission. Final results will be available in time for final publication.
Review

- k-best MST parser
- Unified modeling approach
 - Trained via MaxEnt
 - Training for large datasets - Bagging
- Allows for arbitrary features
 - edge-factored as preprocessor
 - tree models allow for rich set of features
Applications

- **Current work**
 - Speech Reconstruction
 - Low-density Language Parsing

- **Future work**
 - Incremental MST Parsing
 - MST MT
Reconstruction

- w/ Erin Fitzgerald and Fred Jelinek
- Finding data for speech reconstruction
- Train parser(s) on representative data
 - One parser trained on “fluent” data
 - One parser trained on “disfluent” data (superset of “fluent” data)
- Preferred parser classification
 - Disfluent parser should accept disfluent data
 - Clean parser should dislike disfluent data
Low-density Language

- w/ Brock Pytlik and David Yarowsky
- Language with few resources (e.g., treebanks, etc.) but have some bilingual dictionaries
- Dictionary based techniques to generate glosses (possibly using “bridge” languages)
- Parsing glosses with lexical dependency parser
 - Trained on order independent features
 - Can recover some semantic relationship
Incremental MST

- Left-to-right building of max spanning tree
- Utilize similar properties as k-best
- May not be polynomial
MST MT

- Structural transfer based on MT by parsing
- Alignment/transduction model used to construct decoding graph
- MST algorithm used as decoder
Conclusion

- Two-stage k-best MST parser
 - Common training paradigm
 - Two related feature sets (reranker allows anything)
 - Competitive results (compared to CoNLL best)
 - k-best output (actual reranking)
- Flexibility (applications)
 - Takes advantage of lexically trained parser (no morphological or syntactic features)
 - Robust Multilingual Use