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Abstract

In reverberant environments there are long term interactions be-
tween speech and corrupting sources. In this paper a time de-
lay neural network (TDNN) architecture, capable of learning
long term temporal relationships and translation invariant rep-
resentations, is used for reverberation robust acoustic model-
ing. Further, iVectors are used as an input to the neural network
to perform instantaneous speaker and environment adaptation,
providing 10% relative improvement in word error rate. By sub-
sampling the outputs at TDNN layers across time steps, training
time is reduced. Using a parallel training algorithm we show
that the TDNN can be trained on ~ 5500 hours of speech data
in 3 days using up to 32 GPUs. The TDNN is shown to provide
results competitive with state of the art systems in the IARPA
ASpIRE challenge, with 27.7% WER on the dev_test set.
Index Terms: far field speech recognition, time delay neural
networks, reverberation

1. Introduction

In reverberant environments the reflections of the signal affect
the signal over several time frames. These long term interac-
tions are due to multiple paths from each sound source to the
microphone, each with its own delay. To tackle these longer
term interactions between the direct speech signal and the cor-
rupting sources, speech recognizers have to account for long-
term acoustic context [1].

Recurrent neural networks (RNNs) which use a dynami-
cally changing contextual window over all of the sequence his-
tory rather than a fixed context window are a viable choice for
learning reverberation robust representations. They have been
shown to achieve state of the art performance on LVCSR tasks
[2]. Weninger et al. ([3l!4]) have shown that deep RNNs are
suitable for feature enhancement of reverberant speech signals.
However due to recurrent connections in the network, paral-
lelization during training cannot be exploited to the same extent
as in feed forward neural networks.

In this paper we use a time delay neural network [S]], which
is a feed forward network architecture that is effective in mod-
elling long term temporal contexts. In [6] it was shown that
TDNNSs can be trained with training times competitive with
those of standard feed-forward DNNs, by sub-sampling the
TDNN layer outputs. In this paper we use the TDNN archi-
tecture suggested in [6] for learning reverberation robust rep-
resentations. The TDNN was able to benefit from increasing
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the input context up to 280 milliseconds. The ability to process
such a wide temporal context enables the network to deal with
late reverberations.

iVectors which capture both speaker and environment spe-
cific information have been shown to be useful for rapid adap-
tation of the neural network [[7, 18, 19]. iVector based adaptation
has also been shown to be effective in reverberant environments
[LO]. In this paper we use this adaptation technique.

We show experimental results on the ASpIRE far-field
speech recognition challenge held by IARPA [11]. This chal-
lenge uses the English portion of the Fisher database [[12] for
acoustic and language model training. We show that in this large
data scenario the proposed network architecture, combined with
a parallel training technique [13]], can train on multi-condition
training data of ~ 5500 hours, using up to 32 GPUs, in 3 days.

Using the TDNN architecture helps us to achieve results
close to those of the best combined system submitted to the AS-
PIRE challenge, while using only a single system. Our system
was able to achieve 27.7% WER on the dev-test set, while the
best system achieved 27.2% WER.

The paper is organized as follows, Section[Z]describes prior
work, Section[3]describes the neural network architecture, Sec-
tion[d] describes an online iVector extraction technique suitable
for unsegmented audio recordings, Section [5 details the exper-
imental setup, Section [f] analyses the results, and conclusions
are presented in Section

2. Relevant Prior Work

Signal and feature enhancement techniques [14} [15,[16}[17] are
widely used to tackle reverberation in ASR systems using stan-
dard acoustic models. However a potential drawback of the en-
hancement based approaches is the inevitability of estimation
errors [1]. An alternative approach is to learn models which
are robust to training-data distortions. Seltzer et al. [18] have
shown that DNN based acoustic models can learn distortion sta-
ble representations at higher layers in the network, when trained
with multi-condition data. In this paper we use a combination of
reverberated training data, a TDNN neural network, and iVector
based adaptation, to learn a network that is robust to reverbera-
tions.

Reverberant speech is assumed to be composed of direct-
path response, early reflections and late reverberations. Reflec-
tions within a delay of 50ms of the direct signal are catego-
rized as early reflections. Late reverberations, which comprise
of later reflections, have reverberation time from 200 to 1000
ms in typical office environments [1]. Early reflections can be
effectively dealt with using DNN architectures, which operate



on comparatively short temporal contexts. However in order to
tackle late reverberations, DNNs should be able to model tem-
poral relationships across wide acoustic contexts.

TDNNSs [3]], which are feed-forward neural networks, with
the ability to model long-term temporal relationships, were used
here. We used the sub-sampling technique proposed in [6] to
achieve an acceptable training time.

In Section | we describe the time delay neural network ar-
chitecture in greater detail.

3. Neural network architecture

In a TDNN architecture the initial transforms are learnt on nar-
row contexts and the deeper layers process the hidden activa-
tions from increasingly wider contexts. Hence the higher layers
have the ability to learn longer temporal relationships. However
the training time of a TDNN is substantially larger than that of
a DNN, when modeling long temporal contexts, despite the use
of speed-up techniques such as [19].

In [6] a sub-sampling technique was proposed to reduce the
number of hidden activations computed in the TDNN, while en-
suring that the information from all time steps in the input con-
text was used. Figure [I] shows time steps at which activations
are computed, at each layer, and the dependencies between ac-
tivations across layers, both in a conventional TDNN (blue+red
edges) and a sub-sampled TDNN (red edges), in order to com-
pute the network output at time ¢. The use of sub-sampling
speeds up the training by ~ 5z in the baseline TDNN architec-
ture shown in Figure[T]
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Figure 1: Computation in TDNN with sub-sampling (red) and
without sub-sampling (blue+red)

The hyper-parameters which define the sub-sampled TDNN
network structure are the set of frame offsets that we require
as an input to each layer. In the case pictured, these are
{-2,-1,0,1,2},{-1,2},{—3,3} and {—7, 2}. In a conven-
tional TDNN, these input frame offsets would always be con-
tiguous. However, in our work we sub-sample these; in our
normal configuration, the frame splicing at the hidden layers
splices together just two frames, separated by a delay that in-
creases as we go to higher layers of the network [6].

In this paper we were able to operate on input contexts of up
to 280 ms without detriment in performance, using the TDNN.
Thus the TDNN has the capability to tackle corruptions due to
late reverberations.

Our TDNN uses the p-norm non-linearity [20]. We use a
group size of of 10, and the 2-norm.

3.1. Input Features

Mel-frequency cepstral coefficients (MFCCs) [21], without
cepstral truncation, were used as input to the neural network.
40 MFCCs were computed at each time index. MFCCs over a
wide asymmetric temporal context were provided to the neural
network. Different contexts were explored in this paper. 100
dimensional iVectors were also provided as an input to the net-
work, every time frame. Section[]describes the iVector extrac-
tion process during training and decoding in greater detail.

3.2. Training recipe

The paper follows the training recipe detailed in [20]]. It uses
greedy layer-wise supervised training, preconditioned stochas-
tic gradient descent (SGD) updates, an exponentially decreas-
ing learning rate schedule and mixing-up. Parallel training of
the DNNSs using up to 18 GPUs was done using the model aver-
aging technique in [13].

3.2.1. Modified sMBR sequence training

Sequence training was done on the DNN, based on a state-level
variant of the Minimum Phone Error (MPE) criterion, called
sMBR [22] . The training recipe mostly follows [23]], although
it has been modified for the parallel-training method. Training
is run in parallel using 12 GPUs, while periodically averaging
the parameters, just as in the cross-entropy training phase.

Our previous sMBR-based training recipe degraded results
on the ASpIRE setup, so we introduced a modification to the
recipe which we have since found to be useful more generally,
in other LVCSR tasks.

In the SMBR objective function, as for MPE, insertion er-
rors are not penalized. This can lead to larger number of inser-
tion errors when decoding with sMBR trained acoustic models.
Correcting this asymmetry in the SMBR objective function, by
penalizing insertions, was shown to improve the WER perfor-
mance of sSMBR models by 10% relative. In standard sMBR
training [22, 24|, the frame error is always set to zero if the
reference is silence, which means that insertions into silence
regions are not penalized. In other words, frames where the
reference alignment is silence are treated specially. (Note that
in our implementation several phones, including silence, vo-
calized noise and non-spoken noise, are treated as silence for
these purposes.) In our modified SMBR training method, we
treat silence as any other phone, except that all pdfs of silence
phones are collapsed into a single class for the frame-error com-
putation. This means that replacing one silence phone with an-
other silence phone is not penalized (e.g. replacing silence with
vocalized-noise is not penalized), but insertion of a non-silence
phone into a silence region is penalized. This is closer to the
WER metric that we actually care about, since WER is gener-
ally computed after filtering out noises, but does penalize in-
sertions. We call our modified criterion the “one-silence-class”
modification of sMBR.

4. iVector Extraction

In this section we describe the iVector estimation process
adopted during training and decoding. We discuss issues in es-
timating iVectors from noisy unsegmented speech recordings,
and in using these noisy estimates of iVectors as input to neural



networks.

On each frame we append a 100-dimensional iVector [25]]
to the 40-dimensional MFCC input. The MFCC input is not
subject to cepstral mean normalization; the intention is to al-
low the iVector to supply the information about any mean offset
of the speaker’s data, so the network itself can do any feature
normalization that is needed. In order for the mean-offset in-
formation to be encoded in the iVector, we estimate the iVector
on top of features that have not been mean-normalized. How-
ever, the Gaussian posteriors used for the iVector estimation are
based on features that have been mean normalized using a slid-
ing window of 6 seconds.

We noticed that the iVector adaptation was not sufficiently
effective in adapting to test signals that had substantially differ-
ent energy levels than the training data. For the results reported
here, this issue was resolved by normalizing the test-signal ener-
gies to be the same as the average of the training data. This nor-
malization resulted in a relative improvement of 15% in WER.
The reason why the network did not learn to do this normaliza-
tion automatically is that the training data was too carefully nor-
malized; in future we will randomize the volume of our training
data to force the network to learn this type of normalization.

4.1. iVector Extraction during training

The iVector estimator was trained on a 100 hour subset of train-
ing data: this includes the training of the Gaussian mixture
model used for the UBM, and the estimation of the 7" matrix.
Then, for the entire training data, iVectors were estimated. In
order to ensure sufficient variety of the iVectors in the training
data, rather than estimating a separate iVector per speaker we
estimate them in an online fashion, where we only use frames
prior to the current frame (for some arbitrary ordering of the ut-
terances). We re-set this history every two utterances, so that we
still have some training-data variety even when there are only a
few speakers.

4.2. iVector extraction during decoding

During decoding, the constraints of online extraction were not
enforced and iVectors were estimated in an offline fashion from
statistics accumulated over fairly large portions of the speaker’s
data (at least 60 seconds).

The prior term in the iVector extraction is quite important
when applying these iVector based methods to data that is dis-
similar to the training data. In our iVector estimation we always
scale the per-frame posteriors by 0.1 (equivalent to scaling the
prior term up by 10). For the ASpIRE challenge we made a
further modification: if the total count of (scaled) statistics for
iVector extraction exceeds a predefined limit (75 for these ex-
periments), we scale the statistics down to that value, which
again is equivalent to scaling the prior term up. Due to the
posterior scale of 0.1, this effect kicks in after we exceed 750
frames of features.

4.2.1. iVectors from reliable speech segments

In the current LVCSR task (see below), audio recordings 5-10
minutes in length were provided without speech end-point in-
formation. The recordings had long durations of contiguous
silence, similar to single channel recordings of conversational
telephone speech. We found empirically that excluding the si-
lence from the statistics for iVector estimation was very helpful.
Even keeping a small amount of silence around every speech
segment (similar to the amount we saw in training) was harm-

ful; possibly the nature of the silence in the ASpIRE test data
was so different from what was seen in the artificially reverber-
ated and noise-added training data, that it affected the iVector
in unexpected ways.

In order to detect regions containing speech, we perform a
first-pass decode of the audio data using iVectors derived from
both speech and non-speech regions. Reliable speech segments
are identified from this first-pass decode. Audio segments cor-
responding to words with confidence measures of 1.0 (derived
from lattice posteriors) and with durations less than one second
were considered reliable (over half the words recognized had a
confidence of at least 1.0). We also excluded the words “mm”
and “mhm”. A second pass decode was then performed us-
ing the iVectors estimated from these reliable speech segments.
This led to 8.9% relative improvement in WER, versus using all
the data for iVector estimation.

5. Experimental Setup
5.1. Acoustic Model

Speech from the English portion of the Fisher corpus [12]
(LDC2004S13, LDC2005S13) was used to train the acoustic
models. Multi-condition training data was created by distort-
ing speech with real world room impulse response (RIR) and
noise recordings available from three different databases viz.,
the RWCP sound scene databaseﬂ [26], the REVERB challenge
database [27]] and the Aachen impulse response database [28].
325 muti-channel recordings of RIRs were selected from the
three databases. Noise recordings were available for only 51
RIRs. The first channel from the multi-channel recordings was
used for corruption. Three different copies of each recording
in the Fisher corpus were created by randomly sampling three
different pairs of RIRs and noise recordings (where available)
from the above set. Overall ~ 5500 hours of training data was
created, based on these copies. Another version of the acoustic
model was trained on data that was processed as above, but also
then speed perturbed as in [29]. We still produced 3 copies of
each original recording, by combining a random RIR and noise
recording with each different speed of the data. Speed perturba-
tion, which emulates pitch and tempo variations in speech, was
shown to provide on average 4.3% relative gain in a variety of
LVCSR tasks. However this did not help in the current task,
possibly because we already had enough training-data variation
from the reverberation and noise.

A GMM-HMM acoustic model was used to generate align-
ments for training neural networks. This acoustic model was
trained on clean Fisher speech data using features that were
obtained by splicing together 7 frames (3 on each side of the
current frame) of 13-dimensional MFCCs (C0-C12) and pro-
jecting down to 40 dimensions using linear discriminant anal-
ysis (LDA). The MFCCs were normalized to have zero mean
per speaker. We also used a single semi-tied covariance (STC)
transform [30] on the features obtained using LDA. These com-
bined features are referred to as LDA+STC. Moreover, speaker
adaptive training (SAT) was done using a single feature-space
maximum likelihood linear regression (FMLLR) transform es-
timated per speaker. Alignments for clean speech were gener-
ated using the GMM-HMM system, using clean data as recom-
mended in 31} [32].

'We would like to thank Mitsubishi Electric Research Laboratories
(MERL), for providing the RWCP database.



5.2. Language Model

A trigram language model (LM) is first trained on the 3M words
of the training transcripts, which is later interpolated with an-
other trigram LM trained on 22M words of the Fisher English
transcripts (LDC2004T19 and LDC2005T19). The same pro-
cess is repeated for building a 4gram LM. We use SRI’s lan-
guage modeling toolkit SRILM [33] for building our LMs, with
Kneser-Ney smoothing. The final trigram LM has 1.6M tri-
grams and the 4gram LM has 1.7M 4grams. We directly use
the trigram LM for decoding. The 4gram LM is only used for
rescoring the lattices generated by the trigram LM; we do not
use it for lattice generation for reasons of memory efficiency.

Estimating pronunciation probabilities from training data
has been found helpful when multiple pronunciations are avail-
able for certain words in the training lexicon [34} 35]]. In [35]]
it is shown that modeling word-dependent silence probabilities
as well as pronunciation probabilities, imroves recognition per-
formance consistently over multiple datasets. We follow that
approach in our ASpIRE system.

5.3. Decoding

Two data sets dev of 5 hrs and dev-test of 10 hrs were pro-
vided as part of ASpIRE challenge. Each set is composed of
10 minute recordings. The end points for the speech portions
of the recording were also provided for the dev set. However
in order to emulate the decoding scenario of dev-test, we re-
port performance on dev set without the knowledge of segment
information.

Decoding the entire 10 minute recording as one segment is
not possible due to round-off in the decoder. We segmented the
recordings into chunks of 10 seconds long each, shifted by 5
seconds each time. There was no attempt to make the chunk
boundaries coincide with silence. We reasoned that if a record-
ing is cut in the middle, only the part of the transcript near the
cut point will be affected, so we filtered the transcripts by re-
moving words whose midpoints were within 2.5 seconds of the
edge of its chunk of origin, before combining them into a single
long transcript.

6. Results

The TDNN had 6 layers, of which 3 layers (not counting the
input layer) were subject to frame splicing across multiple
time offsets. Three different systems TDNN-A, TDNN-B and
TDNN-C corresponding to the three different input contexts of
[t —13,t+9] frames, [t — 16, t 4+ 12] frames and [t — 22, t + 12]
were used in the comparison. The splicing configuration of the
TDNN-A system was [—2, 2], {—1, 2}, {0}, {3, 3}, {-7, 2},
{0} (where the {0} layers are conventional, non-splicing hid-
den layers). The TDNN-B and TDNN-C systems were as
TDNN-A except replacing {—7,2} with {—10,—7,2,5} and
{—16,—7,2,5} respectively. In all hidden layers the p-norm
input and output dimensions were 4000 and 400 respectively.
Results corresponding to this comparison are presented in
Table[1] It was observed that input contexts of [t — 16, ¢ + 12],
were optimal for training on reveberant speech. This result can
be compared with the input temporal context of [t — 13,t +
9] found optimal for recognition of non-reverberant speech in
[6]. This additional context could be necessary when training
on reverberant data to compensate for the late reverberations.
The use of even larger temporal contexts (TDNN-C) did not
lead to better results. However it was interesting to note that
use of larger contexts were not detrimental to the same extent

Table 1: Comparison of input contexts and training data aug-
mentation, used for training the TDNNs

Acoustic Model training data  dev WER

TDNN A rvb 31.7

TDNN B rvb 30.8

TDNN B rvb + sp 31.0

TDNN C rvb + sp 31.1
rvb:  reverberation of training data using real world RIRs
sp: speed perturbation of data prior to reverberation

as seen in other speech recognition tasks with non-reverberant
data [6].

Table 2: Comparison of systems with and without iVectors

Acoustic Model dev WER
TDNN B w/o iVectors 34.8
TDNN B + iVectors' 33.8
TDNN B + iVectors® 30.8

L estimated on speech and non-speech

2 estimated on reliable speech segments

Table 3: Results with sequence training of TDNN models

Acoustic Model dev WER  dev-test WER

TDNN A 31.7 -
TDNN A + sequence training® 34.0 -*
TDNN A + sequence training? 30.6 30.1
TDNN B 30.8 27.7
TDNN B + sequence training? 29.5 28.9

1 with sMBR criterion
2 with modified SMBR criterion
* not available due to shutdown of scoring servers

These systems were trained on data generated from two dif-
ferent types of data augmentation techniques which are rever-
beration (rvb) and speed perturbation (sp). Speed perturbation
which was shown to be advantageous across several LVCSR
tasks [29]], was not helpful in the current task. Training for more
epochs improved the performance of the TDNN-B (rvb+sp) sys-
tem; however, it just matched the TDNN-B (rvb) system.

Table [2] compares systems trained with and without iVec-
tors, and different types of iVector extraction. The use of iVec-
tors from reliable speech segments is critical.

Table [3| shows results of TDNNs using sequence training.
The standard sMBR criterion was detrimental to the perfor-
mance; but using the modified SMBR criterion, gains were ob-
served on dev set. However these did not translate to dev-test
set. With sequence training there was 4.2% relative improve-
ment on dev set and 4.3% relative decrease on dev-test set.
TDNN-B without sequence training was chosen as our best sys-
tem with dev-test performance of 27.7%.

7. Conclusions

In this paper, we used a TDNN on input context of [—16, 12]
frames for reverberation robust acoustic modeling. We dis-
cussed issues in extracting iVectors from unsegmented reverber-
ant audio recordings and suggested steps to tackle these issues.
We proposed a modified SsMBR criterion, which penalizes in-
sertions. Using a combination of these techniques, we showed
improvements in a far-field recognition task.
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