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ABSTRACT

This paper summarizes the 2010 CLSP Summer Workshop on
speech recognition at Johns Hopkins University. The key theme of
the workshop was to improve on state-of-the-art speech recognition
systems by using Segmental Conditional Random Fields (SCRFs) to
integrate multiple types of information. This approach uses a state-
of-the-art baseline as a springboard from which to add a suite of
novel features including ones derived from acoustic templates, deep
neural net phoneme detections, duration models, modulation fea-
tures, and whole word point-process models. The SCRF framework
is able to appropriately weight these different information sources
to produce significant gains on both the Broadcast News and Wall
Street Journal tasks.

Index Terms— Segmental Conditional Random Field, CRF,
Speech Recognition

1. INTRODUCTION
Novel techniques in speech recognition are often hampered by the
long road that must be followed to turn them into fully functional
systems capable of competing with the state-of-the-art. Inthis work,
we explore the use of Segmental Conditional Random Fields asan
integrating technology which can augment the best conventional sys-
tems with information from novel scientific approaches.

The Segmental CRF approach [1] is a modeling technique in
which the probability of a word sequencew is estimated from obser-
vationso asP (w|o) using a log-linear model. Described in Sec. 2,
the model determines the probability of a word sequence by weight-
ing features which each measure some form of consistency between
a hypothesis and the underlying audio. These features are atthe
word-segment level, for example a feature might be the similarity
between observed and expected formant tracks.

The key characteristic of the SCRF approach is that it provides a
principled yet flexible way to integrate multiple information sources:
all feature weights are learned jointly, using the conditional maxi-
mum likelihood (CML) objective function. In particular, SCRFs can
combine information

• of different types, for example both real valued and binary
features;

• at different granularities, for example at the frame, phoneme
or word level

• of varying quality, for example from a state-of-the-art base-
line and from less accurate phoneme or word detectors

• of varying degrees of completeness, for example a feature that
detects just one word

• that may be redundant, for example from phoneme and sylla-
ble detectors

Workshop supported by NSF grant IIS-0833652, with supplemental
funding from Google Research, Microsoft, and the JHU HLT Center of Ex-
cellence. F.S. and M.W. supported by NSF and DARPA under grant and
contract numbers NSF 0957742 and DARPA N10AP20019. D.V.C and
K.D. supported by FWO travel grant K.2.105.10N, FWO research grant
G.0260.07, and the EU MC-RT Network “Sound-to-Sense.” L.A.thanks
AFOSR grant FA9550-09-1-0060.

This flexibility is hard to achieve in standard systems, and opens new
possibilities for the integration of novel information sources. The
recently released SCARF toolkit [2] is designed to support research
in this area, and was used at the workshop.

Over the course of the workshop we exploited several informa-
tion sources to improve performance on Broadcast News and Wall
Street Journal tasks, including:

• Template matching [3]
• Neural-net phoneme detectors, both MLP based [4, 5] and

Deep Neural Nets [6]
• Word detectors based on Point Process Models [7]
• Modulation feature [8, 9] based multiphone detectors
• Duration models

In the remainder of the paper, we first summarize the SCRF model,
then describe these information sources and their results in isolation,
and finally present experimental results combining multiple informa-
tion sources.

2. SEGMENTAL CRFS

A segmental CRF model extends the original CRF formulation [10]
by applying the markov assumption at the segment rather thanframe
level, thus enabling the use of long-span features. Mathematically, it
differs from [11] in that the segmentation is unknown duringtrain-
ing, resulting in a non-convex objective function, and differs from
variants of [12] in that the set of features is not pre-defined. The
model is illustrated in Fig. 1. It is a two layer model, with states
that represent words in the top layer, and observations in the bottom
layer. All possible segmentations of the observations intowords are
considered in training and decoding; this figure shows one particular
way of segmenting seven observations into three words. For agiven
segmentation, feature functions are defined which measure the con-
sistency between the word hypothesis and the observations.SCARF
is designed to work with word level features, as well as with obser-
vations that consist of the detection of acoustic units or events, most
commonly phoneme or syllable detections. This is the meaning of
the observations in Fig. 1, and critical to the automatically defined
features in Sec. 3.

2.1. Model Definition

Denote byq a segmentation of the observation sequences, for ex-
ample in Fig. 1 where|q| = 3. The segmentation induces a set of
(horizontal) edges between the states, referred to below ase ∈ q.
One such edge is labelede in Fig. 1 and connects the state to its
left, se

l , to the state on its right,se
r. Further, for any given edgee,

let o(e) be the segment associated with the right-hand statese
r, as

illustrated in Fig. 1. With this notation, we represent all features as
fk(se

l , s
e
r, o(e)). The conditional probability of a state sequences

given an observation sequenceo for a SCRF is then given by
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.



Fig. 1. A Segmental CRF.

Training is done by gradient descent with a conditional maxi-
mum likelihood objective function, and a description of theupdate
equations may be found in [1].

The model above is quite general; to adapt SCRFs to large vo-
cabulary continuous speech recognition, its states are made to refer
to the states in an underlying finite state language model, for exam-
ple a trigram LM. Then, transitions from one state to anothercor-
respond to changing states in this language model. This has two
important consequences: first, we are not constrained to bigram lan-
guage models, and second, the LM score can easily be used as a
feature and its weight learned jointly with the others. As a second
adaptation to LVCSR, we use lattices generated by a conventional
system to constrain the set of segmentations that are considered.

3. FEATURES
SCARF automatically creates a wide range of features that relate
the detections present in an observation stream to the wordsbeing
hypothesized. These are briefly summarized below. In addition, the
lattices can be annotated with user-defined word-level features.

3.1. Expectation Features

Expectation features are defined with reference to a dictionary that
specifies the spelling of each word in terms of the units. The expec-
tation features are:

• correct-accept of unitu: u is expected on the basis of the
dictionary, and it exists in the span

• false-reject ofu: u is expected but not observed
• false-accept ofu: u is not expected and it is observed

Expectation features may further be defined on n-grams of units.

3.2. Levenshtein Features

Levenshtein features are computed by aligning the observedunit se-
quence in a hypothesized span with that expected based on thedic-
tionary entry for the word. Based on this alignment, the following
features are extracted:

• the number of times unitu is correctly matched
• the number of timesu in the pronunciation is substituted
• the number of timesu is deleted from the pronunciation
• the number of timesu is inserted

3.3. Existence Features

Whereas Expectation and Levenshtein features are defined with ref-
erence to a dictionary, Existence features indicate the simple associ-
ation between a unit in a detection stream, and a hypothesized word.
An existence feature is present for each unit/word combination seen
in the training data, and indicates whether the unit is seen within the
hypothesized word’s span. N-grams of units may be used as well.

3.4. Baseline Feature

To ensure that baseline performance can be achieved, SCARF imple-
ments a simple feature which requires only the one-best sequence of
a baseline system. The baseline feature for a segment is always ei-
ther+1 or −1. It is +1 when a hypothesized segment spans exactly

one baseline word, and the label of the segment matches the baseline
word. Otherwise it is−1. The contribution of the baseline feature to
a hypothesis score will be maximized when the hypothesis exactly
matches the baseline. Thus, by assigning a high enough weight to
the baseline feature, baseline performance is guaranteed.In prac-
tice, the baseline weighting is learned and its value will depend on
the relative power of the additional features.

4. DATASETS

In subsequent sections, we will describe the information sources we
used. In order to present the relevant experimental resultsas we go,
we now to describe our datasets.

4.1. Wall Street Journal

The Wall Street Journal database was used for training and testing
both template and phone detector features. Results are presented
on the nov92 20k open vocabulary test set using the default trigram
LM. Training is done on the SI-284 data from WSJ0+1 compris-
ing 81 hours from 284 speakers. The dictionary used was CMUdict
0.6d. SPRAAK [13] was used to create a conventional HMM system
using Mel Spectra, postprocessed by mutual information discrimi-
nant analysis, VTLN and CMS as features. The acoustic models
use a shared pool of 32k Gaussians and 5875 cross-word context-
dependent tied triphone states. This results in a baseline 7.3% WER.
One phone detector was derived from the baseline system by decod-
ing with a phoneme LM; three others from variations on the baseline
setup with a different preprocessing or size of Gaussian pool.

4.2. Broadcast News

Broadcast News data was used to test all features except those based
on templates (due to computational requirements). The acoustic
model is based on that of [14] and trained on about 430 hours of
HUB4 and TDT4 data. A 4-gram language model was trained with
about 400M words from HUB4 and Newswire data. The develop-
ment data consisted of the NIST dev04f set (22k words), and the test
set was the NIST RT04f data (50k words).

The acoustic modeling included LDA+MLLT, VTLN, fMLLR
based SAT training, fMMI and mMMI discriminative training,and
MLLR. After training, decoding with the IBM Attila decoder [14]
produced lattices and the baseline feature of Sec. 3.4. A separate
system was trained at Microsoft Research using just the HUB4tran-
scribed data, and had a WER about 4% absolute higher. Decod-
ing with this system produced a word detector stream, and thelat-
tices were annotated with feature values derived in the sameway as
the baseline features. In subsequent tables, SCARF1 refersto using
SCARF with just two features: the baseline feature and the language
model score.

5. TEMPLATE FEATURES

The work on template features started from a system operating ac-
cording to the principles described in [15], i.e. the baseline HMM
system generates word graphs enriched with phone segmentations
after which each word arc score is replaced with the sum of thecor-
responding context-dependent phone template scores.

A first set of improvements done at the workshop was related
to the DTW implementation and included: (i) score adjustment in
function of duration, (ii) using the K=5-best average scoreinstead
of single best, (iii) assigning a local sensitivity matrix (diagonal co-
variance) to each test frame instead of to each reference frame as
was done in [3], (iv) using soft template boundaries, and (v)adding
context-dependent word templates.



Setup WER
initial template system 9.6%
improved template system 8.2
SCARF+meta information 7.6
+HMM baseline system 6.9
+phone detectors 6.6

Table 1. Results using template features in WSJ.

All of the above fit within the framework of a single best Viterbi
decoding strategy. However, the template based matching gives us a
wealth of meta-information about the top-N templates for each seg-
ment which can not trivially be incorporated in single best decoding,
but which can be harvested by the SCARF framework. The most
important features measure (i) if the phone templates used originate
from the hypothesized word, (ii) if word initial and final phone tem-
plates are used for hypothesized word initial and final phones, (iii)
the speaker entropy and (iv) the average warping factors.

Two companion papers describe the above listed additions inde-
tail. All parameter settings were optimized by means of the SCARF
toolkit on the dev92 development data. Table 1 summarizes the re-
sults of the intermediate template based systems and the final results
after combining the template system with the baseline (7.3%WER)
HMM system and four phone detector streams. We see a 19% rela-
tive improvement over the initial template system, and 9.6%relative
improvement over our best previous HMM system.

6. NEURAL NET FEATURES
6.1. Multi-layer Perceptrons

Phoneme posterior probabilities estimated using Multi-Layer Per-
ceptrons (MLPs) are extensively used both as features and scores.
In the SCARF framework, we explore a new application of these
posteriors as phonetic event detectors for speech recognition. In this
approach, we use two MLPs in a hierarchical fashion to estimate
phoneme posterior probabilities. The first MLP transforms acoustic
features with a context of 9 frames to regular posterior probabilities.
The second MLP is trained in turn on posterior outputs from the first
MLP. By using a context of 11 frames, we allow the second MLP
to learn temporal patterns in the posterior features. Thesepatterns
include phonetic confusions at the output of the first MLP as well
as the phonotactics of the language. The enhanced posteriors at the
output of the second MLP are finally used as emission probabilities
of a hybrid HMM-ANN phoneme decoder to produce a phoneme
sequence for use as as a detector stream in SCARF.

For our experiments we trained the MLP networks using a 2-
fold cross validation on 400 hours of broadcast news. The input
features were short-term spectral envelope (FDLP-S) and modula-
tion frequency features (FDLP-M) derived from sub-band tempo-
ral envelopes of speech [4] along with conventional PLP features.
We have also used sparse PLP features, derived from a sparse auto-
associative neural network trained on 35 hours of speech [5]. While
the first MLP in the hierarchy is trained using 8000 hidden nodes, the
second uses a much simpler network with 800 hidden nodes. Both
the networks use an output phoneset of 42 phones. Table 2 shows the
effectiveness of these detectors, along with the deep net detectors of
the next section, when used as the sole source of acoustic informa-
tion. In these experiments we removed the baseline feature and used
Levenshtein features along with order 2 Expectation and Existence
features. In the context of SCARF1 + MSR word detectors, we ob-
serve an overall improvement from 15.3% to 15.1%.

6.2. Deep Neural Nets

Deep neural nets (DNNs) are similar to MLPs in architecture.How-
ever, the parameters of DNN are trained very differently. Inpar-
ticular, there is an initial phase of unsupervised learningin which

Acoustic Input PER WER
None - 17.9
PLP 32.5% 17.2
PLP-Sparse 31.0 17.3
FDLP-S 31.1 17.0
FDLP-M 28.9 16.9
DNN-20hrs. 28.8 17.1
DNN-40hrs. 28.2 17.0

Table 2. Phoneme detectors as the acoustic model for dev04f.

DNNs are builtlayer by layer with weights trained to maximally im-
prove the likelihood of the unlabeled training data. This isachieved
in our case by stacking several one-hidden-layer restricted Boltz-
man machines (RBMs)[6]. The primary goal of this phase is to
learn good initial network parameters from data. Once all layers are
learnt, the second phase of supervised learning is invoked.At this
phase, the labels of training data are used to fine-tune the previously
learned weights with error back-propagation. To explore the utility
of DNNs for large-vocabulary speech recognition, we used them to
create phoneme detectors for SCARF, integrating their posteriors in
the same way as the outputs of MLPs. Our DNNs have 3 hidden lay-
ers, with 2048 hidden units each and one 132-unit softmax output
layer for multiway classification at the phoneme sub-state level. In
the unsupervised learning phase, we used contrastive divergence, a
RBM-style parameter learning technique. In the supervisedlearning
phase, we use stochastic gradient descent.

Table 2 shows the effectiveness of the DNN phoneme detectors
when used as the sole source of acoustic information. These results
are comparable to the MLP results, though we note that the DNN
detectors had the benefit of using fMMI features as input. In com-
bination with SCARF1 and MSR word detectors, the both MLP and
DNN detections produce 0.1 to 0.2% improvement on dev04f.

7. POINT PROCESS MODELS

A discriminatively trained variant of the point process model (PPM)
described in [7] was used to construct whole word classifiersfor 72
common error producing words. PPMs provide a means to explicitly
model the temporal patterns of acoustic or phonetic events present
when a word or syllable is produced. The MLP-based phonetic pos-
teriorgrams described in Sec. 6.1 were used to define phonetic events
(local maxima exceeding posterior probability of 0.5) thatprovided
our input representation. Critical to our success, positive and nega-
tive training examples of each word were extracted directlyfrom At-
tila BN lattice competitors, allowing the PPMs to focus on fine grain
distinctions between the correct and incorrect baseline hypotheses.

Using the PPM classifier scores, we defined a SCARF lattice an-
notation feature stream. Table 3 shows the dev04f word errorrates
for the SCARF1 baseline with and without our PPM features using
both a unigram and trigram language model. Interestingly, we see
that the PPM annotation features achieve 0.7% of the 0.9% gain ob-
served when moving from a unigram to a trigram language model,
while using only within-arc acoustics and unigram statistics. Com-
bined with the trigram LM, the PPM annotations provided 0.2%ab-
solute improvement over SCARF1; including the MSR word detec-
tor stream, we observed an additive 0.3% improvement (Table5).

8. MODULATION BASED LATTICE ANNOTATION

Demodulation extracts slowly-varying envelope waveformsof
speech subband signals to obtain a multidimensional vectortime-
series expansion. We used two new methods of demodulation,
coherent [8] and convex [9], as alternatives to the conventional



Setup Unigram LM Trigram LM
SCARF1 16.9% 16.0
+PPM Features 16.2 15.8

Table 3. Effect of PPM features as a function of LM for dev04f.

Setup WER
SCARF1+MSR 15.3%
+Word-duration features 15.2
+Pre/post pausal features 15.1
SCARF1+MSR+Word-confusion features15.0

Table 4. Effect of duration models on dev04f.

Hilbert envelope that underlies the mel-frequency cepstral coeffi-
cient (MFCC) representation. Coherent and convex demodulation
each enforce bandwidth constraints across speech frames onan ap-
proximately syllabic time scale, and offer a new source of acoustic
information that is potentially complementary to detectors derived
from MFCCs. To take advantage of the long-term coherent and con-
vex demodulation features, we trained maximum entropy 1 vs.all
word classifiers using demodulation features as input, and annotated
the lattices with word probability scores. Using a unigram language
model and no baseline feature, we observe about 0.4% absolute
improvement from both sources of modulation information.

9. DURATION MODELS

A segmental model is well suited to the application of duration mod-
els, and a companion paper describes our duration modeling ap-
proaches in detail. Briefly, three types of features were used:

1. Word duration features. For a given word hypothesisw with
a hypothesized lengthl, we add featuresPc(l|w) andPi(l|w)
wherePc andPi represent probability of the observed length
given that the word is correct/incorrect.

2. Pre and Post-Pausal durations. Word duration distributions
are affected by the presence of a pause at the beginning or
ending of a word. To model this, we created separate duration
features for use in this condition.

3. Word Span Confusions. Sometimes long words in the lattice
such asAttendees are mistaken for multiple short words, e.g.
A ten D. When a word spans or is spanned by another, sepa-
rate word duration features are used.

Duration scores were computed for the 100 most frequent words,
which account for over 48% of all errors. Table 4 summarizes the
results of these duration models. The results are in the context of the
MSR word detectors, resulting in a relatively good initial error rate,
and we are able to reduce the error rate by 0.3% absolute.

10. COMBINED BROADCAST NEWS RESULTS

The results are summarized for both development and test sets in
Table 5. We see a consistent gain from both implementing SCARF
training on top of the baseline, and adding the MSR word detectors.
We hypothesize that the 0.3% improvement observed from retrain-
ing with the baseline feature is because a) the dynamic rangeof the
baseline score is more limited than the original acoustic score and
b) the LM weight is discriminatively tuned. Note, however, that this
tuning is on the training data - not dev or test data.

Adding the MSR word detectors provides another large im-
provement. Adding the various information sources either individu-
ally or together produces about 0.3% improvement. Altogether we
observe a relative reduction in WER of 8% for dev04f and over 9%
for RT04.

Setup dev04f RT04
Baseline (Attila) 16.3% 15.7
SCARF1 16.0 15.4
+MSR Word detectors 15.3 14.5
+Duration,PPM,Phoneme Detectors15.0 14.2
Lattice Oracle (lower bound) 11.8 10.2

Table 5. Combined Broadcast News Results.

11. CONCLUSION

This work has demonstrated the ability of Segmental Conditional
Random Fields to integrate new sources of information on topof
state-of-the-art baselines in two different ASR tasks. By using fea-
tures based on template matching, duration models, phonemedetec-
tions, and Poisson process models, we observed 8-9% relative im-
provement in Broadcast News and Wall Street Journal recognition.
The flexibility of the approach opens the possibility of building new
systems based on information integration across numerous sources.
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