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ABSTRACT

This flexibility is hard to achieve in standard systems, goehs new

This paper summarizes the 2010 CLSP Summer Workshop 0Hossibilities for the integration of novel information soes. The

speech recognition at Johns Hopkins University. The keynthef
the workshop was to improve on state-of-the-art speechgrétion
systems by using Segmental Conditional Random Fields (STIRF
integrate multiple types of information. This approachsuaestate-
of-the-art baseline as a springboard from which to add a safit
novel features including ones derived from acoustic tetepladeep
neural net phoneme detections, duration models, moduoldtia-

tures, and whole word point-process models. The SCRF framew

is able to appropriately weight these different informatgpurces

to produce significant gains on both the Broadcast News arltl Wa

Street Journal tasks.

Index Terms— Segmental Conditional Random Field, CRF

Speech Recognition

1. INTRODUCTION
Novel techniques in speech recognition are often hampeydtieh
long road that must be followed to turn them into fully furctal
systems capable of competing with the state-of-the-athisnwork,

we explore the use of Segmental Conditional Random Fieldsas

integrating technology which can augment the best conveatisys-
tems with information from novel scientific approaches.

recently released SCARF toolkit [2] is designed to suppesearch
in this area, and was used at the workshop.

Over the course of the workshop we exploited several informa
tion sources to improve performance on Broadcast News anld Wa
Street Journal tasks, including:

e Template matching [3]

Neural-net phoneme detectors, both MLP based [4, 5] and
Deep Neural Nets [6]

Word detectors based on Point Process Models [7]

e Modulation feature [8, 9] based multiphone detectors

e Duration models

' In the remainder of the paper, we first summarize the SCRF lode
then describe these information sources and their resuiisliation,
and finally present experimental results combining mudtipforma-
tion sources.

2. SEGMENTAL CRFS

A segmental CRF model extends the original CRF formulatidj [
by applying the markov assumption at the segment ratherfthare
level, thus enabling the use of long-span features. Mattieaflg, it

The Segmental CRF approach [1] is a modeling technique iﬁjiﬁers from [11] in that the segmentation is unknown durtrejn-

which the probability of a word sequeneeis estimated from obser-

vationso as P(w|o) using a log-linear model. Described in Sec. 2,

the model determines the probability of a word sequence bghtre
ing features which each measure some form of consistenayebat

a hypothesis and the underlying audio. These features afe at

word-segment level, for example a feature might be the anity
between observed and expected formant tracks.

The key characteristic of the SCRF approach is that it pes/al
principled yet flexible way to integrate multiple informati sources:
all feature weights are learned jointly, using the condiiomaxi-
mum likelihood (CML) objective function. In particular, &®Es can
combine information

ing, resulting in a non-convex objective function, and efiéf from
variants of [12] in that the set of features is not pre-defingtie
model is illustrated in Fig. 1. It is a two layer model, witlatgs
that represent words in the top layer, and observationseitbéfitom
layer. All possible segmentations of the observationswitads are
considered in training and decoding; this figure shows onicpéar
way of segmenting seven observations into three words. Bivea
segmentation, feature functions are defined which meakarean-
sistency between the word hypothesis and the observaBaRF
is designed to work with word level features, as well as witbay-
vations that consist of the detection of acoustic units en&s; most
commonly phoneme or syllable detections. This is the mepafn
the observations in Fig. 1, and critical to the automatjcd#éfined

o of different types, for example both real valued and binaryfeatures in Sec. 3.

features;

o at different granularities, for example at the frame, pmoae
or word level

e of varying quality, for example from a state-of-the-art &as
line and from less accurate phoneme or word detectors

e of varying degrees of completeness, for example a featate th

detects just one word

e that may be redundant, for example from phoneme and syll

ble detectors
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2.1. Model Definition

Denote byq a segmentation of the observation sequences, for ex-
ample in Fig. 1 wheréq| = 3. The segmentation induces a set of
(horizontal) edges between the states, referred to belowasy.

One such edge is labeledin Fig. 1 and connects the state to its
aI'eft, sy, to the state on its rights;.. Further, for any given edge,

let o(e) be the segment associated with the right-hand statas
illustrated in Fig. 1. With this notation, we represent atfures as
fr(st, s7,0(e)). The conditional probability of a state sequerce
given an observation sequenador a SCRF is then given by

o Zq s.t. |q|=|s| eXp(ZeEq,k )\kfk(S?,S:,O(e)))

P = .
(810 = S o i P e NS 5T, 57, 00)))




. o one baseline word, and the label of the segment matchesskéri
|

! word. Otherwise it is-1. The contribution of the baseline feature to

¢ 1 a hypothesis score will be maximized when the hypothesistigxa
ole) matches the baseline. Thus, by assigning a high enough tmeigh
________________________ [ the baseline feature, baseline performance is guaranteeprac-
O o R o e e e tice, the baseline weighting is learned and its value wiliefel on
0 On the relative power of the additional features.
Fig. 1. A Segmental CRF.
4. DATASETS

Training is done by gradient descent with a conditional maxi |, sybsequent sections, we will describe the informatianees we
mum likelihood objective function, and a description of thigglate  \;5ed. In order to present the relevant experimental reasiee go,

equations may be found in [1]. we now to describe our datasets.
The model above is quite general; to adapt SCRFs to large vo-

cabulary continuous speech recognition, its states are riwakfer 41 WallS 3 |
to the states in an underlying finite state language modetxam- ~ 4-1. Wall Street Journa

ple a trigram LM. Then, transitions from one state to anol®@f  The Wall Street Journal database was used for training astichge
respond to changing states in this language model. Thiswas t poth template and phone detector features. Results arernpeels
important consequences: first, we are not constrained tamitan-  gn the nov92 20k open vocabulary test set using the defagiian
guage models, and second, the LM score can easily be used ag @. Training is done on the SI-284 data from WSJO+1 compris-
feature _and its weight learned join_tly with the others. Aseacmd_ ing 81 hours from 284 speakers. The dictionary used was ChtUdi
adaptation to LVCSR, we use lattices generated by a commiti g gd. SPRAAK [13] was used to create a conventional HMM syste
system to constrain the set of segmentations that are evesid using Mel Spectra, postprocessed by mutual informatioaridis-

3. FEATURES nant analysis, VTLN and CMS as features. The acoustic models
) ’ _ use a shared pool of 32k Gaussians and 5875 cross-word tontex
SCARF automatically creates a wide range of features tHatere gependent tied triphone states. This results in a basef8% WER.
the detections present in an observation stream to the vil®idg  Onpe phone detector was derived from the baseline systemdogee
hypothesized. These are briefly summarized below. In anfdithe  jng with a phoneme LM: three others from variations on thesbas
lattices can be annotated with user-defined word-levelifeat setup with a different preprocessing or size of Gaussiah poo

3.1. Expectation Features

. ' . L 4.2. Broadcast News
Expectation features are defined with reference to a datjothat

specifies the spelling of each word in terms of the units. Kpee-  Broadcast News data was used to test all features exceptlbassd

tation features are: on templates (due to computational requirements). The sticou
e correct-accept of uniti: u is expected on the basis of the model is based on that of [14] and trained on about 430 hours of
dictionary, and it exists in the span HUB4 and TDT4 data. A 4-gram language model was trained with
o false-reject ofu: u is expected but not observed about 400M words from HUB4 and Newswire data. The develop-
e false-accept ofi: u is not expected and it is observed ment data consisted of the NIST dev04f set (22k words), amtett

Expectation features may further be defined on n-grams ¢f.uni ~ Setwas the NIST RTO4f data (50k words).
The acoustic modeling included LDA+MLLT, VTLN, fMLLR

3.2. Levenshtein Features based SAT training, fMMI and mMMI discriminative trainingnd
MLLR. After training, decoding with the IBM Attila decoded 4]
produced lattices and the baseline feature of Sec. 3.4. Aratp
system was trained at Microsoft Research using just the HitiB%
scribed data, and had a WER about 4% absolute higher. Decod-
ing with this system produced a word detector stream, andathe

Levenshtein features are computed by aligning the obsemitde-
qguence in a hypothesized span with that expected based alicthe
tionary entry for the word. Based on this alignment, thedielhg
features are extracted:

e the number of times unit is correctly matched tices were annotated with feature values derived in the seayeas
e the number of times in the pronunciation is substituted the baseline features. In subsequent tables, SCARF1 tefasing
e the number of times is deleted from the pronunciation SCARF with just two features: the baseline feature and thguage
o the number of times is inserted model score.

3.3. Existence Features
5. TEMPLATE FEATURES

Whereas Expectation and Levenshtein features are defiriedef

erence to a dictionary, Existence features indicate thplsiassoci- The work on template features started from a system opgratin
ation between a unit in a detection stream, and a hypottesiael. cording to the principles described in [15], i.e. the baseiHMM
An existence feature is present for each unit/word comlminaieen  system generates word graphs enriched with phone segioestat
in the training data, and indicates whether the unit is se#rnimthe after which each word arc score is replaced with the sum ofdine
hypothesized word’s span. N-grams of units may be used ds wel responding context-dependent phone template scores.

A first set of improvements done at the workshop was related
to the DTW implementation and included: (i) score adjustiign
function of duration, (ii) using the K=5-best average sdostead
To ensure that baseline performance can be achieved, SCABE-i  of single best, (iii) assigning a local sensitivity matrdiggonal co-
ments a simple feature which requires only the one-beseseguof  variance) to each test frame instead of to each referenoeefes
a baseline system. The baseline feature for a segment igabira  was done in [3], (iv) using soft template boundaries, andafiding
ther+1 or —1. Itis +1 when a hypothesized segment spans exactlycontext-dependent word templates.

3.4. Baseline Feature



Setup WER Acoustic Input| PER WER
initial template system 9.6% None - 17.9
improved template system 8.2 PLP 325% | 17.2
SCARF+meta informatiorj 7.6 PLP-Sparse 31.0 17.3
+HMM baseline system | 6.9 FDLP-S 311 17.0
+phone detectors 6.6 FDLP-M 28.9 16.9
DNN-20hrs. 28.8 17.1
Table 1. Results using template features in WSJ. DNN-40hrs. 28.2 17.0

All of the above fit within the framework of a single best Viber Table 2. Phoneme detectors as the acoustic model for dev04f.

decoding strategy. However, the template based matchieg gs a
wealth of meta-information about the top-N templates faheseg- ) ] ) ) ] )
ment which can not trivially be incorporated in single bestatling, =~ DNNs are builtayer by layer with weights trained to maximally im-
but which can be harvested by the SCARF framework. The mosprove the likelihood of the unlabeled training data. Thiadhieved
important features measure (i) if the phone templates usgihate ~ in our case by stacking several one-hidden-layer restriBieitz-
from the hypothesized word, (ii) if word initial and final phetem- ~ man machines (RBMs)[6]. The primary goal of this phase is to
plates are used for hypothesized word initial and final pbp(ié) learn good initial network parameters from data. Once gilg are
the speaker entropy and (iv) the average warping factors. learnt, the second phase of supervised learning is invokedhis
Two companion papers describe the above listed additiotis-in ~ Phase, the labels of training data are used to fine-tune #wopisly
tail. All parameter settings were optimized by means of tBARF  learned weights with error back-propagation. To exploeeuttility
toolkit on the dev92 development data. Table 1 summarizeseh Of DNNs for large-vocabulary speech recognition, we usedtto
sults of the intermediate template based systems and thedindts ~ Ccreate phoneme detectors for SCARF, integrating theirepioss in
after combining the template system with the baseline (AB#R) the same way as the outputs of MLPs. Our DNNs have 3 hidden lay-
HMM system and four phone detector streams. We see a 19% rel&fs, with 2048 hidden units each and one 132-unit softmapubut
tive improvement over the initial template system, and 9rébative  layer for multiway classification at the phoneme sub-stevell In

improvement over our best previous HMM system. the unsupervised learning phase, we used contrastivegdivee, a
RBM-style parameter learning technique. In the supervisaching
6. NEURAL NET FEATURES phase, we use stochastic gradient descent.
6.1. Multi-layer Perceptrons Table 2 shows the effectiveness of the DNN phoneme detectors

. . . . . when used as the sole source of acoustic information. Tiessdts
Phoneme posterior probabilities estimated using MulgdraPer- — 5q comparable to the MLP results, though we note that the DNN
ceptrons (MLPs) are extensively used both as features am@SC jetectors had the benefit of using fMMI features as input.oim<

In the SCARF framework, we explore a new application of thesgnation with SCARF1 and MSR word detectors, the both MLP and
posteriors as phonetic event detectors for speech reamgrii this  p\N detections produce 0.1 to 0.2% improvement on devO4f.
approach, we use two MLPs in a hierarchical fashion to eséma

phoneme posterior probabilities. The first MLP transformmsustic
features with a context of 9 frames to regular posterior abdties. 7. POINT PROCESS MODELS

The second MLP is trained in turn on posterior outputs froefitst A discriminativel ; ; ;
; y trained variant of the point process rebPPM)
MLP. By using a context of 11 frames, we allow the second MLP e ribed in [7] was used to construct whole word classif@rg2

to learn temporal patterns in the posterior features. TP@S®MS  mmon error producing words. PPMs provide a means to dttplic
include phonetic confusions at the output of the first MLP &l w 1, 4e| the temporal patterns of acoustic or phonetic eversept

as the phonotactics of the language. The enhanced postatidie o1 5 word or syllable is produced. The MLP-based phonese p
output of the second MLP are finally used as emission praiabil  yojorqrams described in Sec. 6.1 were used to define ploanathts

of a hybrid HMM-ANN phoneme decoder to produce a phonemeqca| maxima exceeding posterior probability of 0.5) theivided
sequence for use as as a detector stream in SCARF. . our input representation. Critical to our success, pasiind nega-

For our experiments we trained the MLP networks using a 246 trajning examples of each word were extracted direfotign At-

fold cross validation on 400 hours of broadcast news. Thetinp 45 g |attice competitors, allowing the PPMs to focus orefgrain
features were short-term spectral envelope (FDLP-S) andlii@e  giq4incions between the correct and incorrect baselipetheses.

tion frequency features (FDLP-M) derived from sub-bandpem Using the PPM classifier scores, we defined a SCARF lattice an-

ral envelopes of speech [4] along with conventional PLPUBL i ion feature stream. Table 3 shows the dev04f word eates
We have also used sparse PLP features, derived from a spaese a for the SCARF1 baseline with and without our PPM featureagisi

associative neural network trained on 35 hours of speechbjle b . : ;

. ) ; ; X . ! oth a unigram and trigram language model. Interestingty/see
the first MLP in the h'e“’?‘mhy is trained using 8000_h|dde| axthe that the PF?M annotatio% feature% acghieve 0.7% of the O.Qgg(,o(gﬁi
;sr(‘econ(tj USES a much sme;IeLnetwoik ]y\gtzh ShOO hldqrerg)lno%dggl BOIServed when moving from a unigram to a trigram language model

€ NEtWOrks use an output pnoneset of 4 phones. 1able OW  while using only within-arc acoustics and unigram statstiCom-
effectiveness of these detectors, along with the deep nmettdes of bined with the trigram LM, the PPM annotations provided 0264

the next section, when used as the sole source of acoustitriaf solute improvement over SCARFL1; including the MSR word dete

tion. In these experiments we removed the baseline feaharesed . o
Levenshtein features along with order 2 Expectation andtErce tor stream, we observed an additive 0.3% improvement (Tgble

features. In the context of SCARF1 + MSR word detectors, we ob

serve an overall improvement from 15.3% to 15.1%. 8. MODULATION BASED LATTICE ANNOTATION
6.2 Deep Neural Nets Demodulation extracts slowly-varying envelope waveforiois
Deep neural nets (DNNSs) are similar to MLPs in architecttiew- speech subband signals to obtain a multidimensional veiche-
ever, the parameters of DNN are trained very differently.pém-  series expansion. We used two new methods of demodulation,
ticular, there is an initial phase of unsupervised learnimgvhich coherent [8] and convex [9], as alternatives to the conveati



Setup Unigram LM | Trigram LM
SCARF1 16.9% 16.0
+PPM Featureg 16.2 15.8

Table 3. Effect of PPM features as a function of LM for dev04f.

Setup WER
SCARF1+MSR 15.3%
+Word-duration features 15.2
+Pre/post pausal features 151
SCARF1+MSR+Word-confusion featurgs15.0

Table 4. Effect of duration models on devO04f.

Hilbert envelope that underlies the mel-frequency cepsiaffi-
cient (MFCC) representation. Coherent and convex demtidnla
each enforce bandwidth constraints across speech framas ap-
proximately syllabic time scale, and offer a new source oluatic
information that is potentially complementary to detestderived

Setup devO4f | RT0O4
Baseline (Attila) 16.3% | 15.7
SCARF1 16.0 15.4
+MSR Word detectors 15.3 145
+Duration,PPM,Phoneme Detectorsl5.0 14.2
Lattice Oracle (lower bound) 11.8 10.2

Table 5. Combined Broadcast News Results.

11. CONCLUSION

This work has demonstrated the ability of Segmental Coorati
Random Fields to integrate new sources of information onafop
state-of-the-art baselines in two different ASR tasks. Biyng fea-
tures based on template matching, duration models, phodetee-
tions, and Poisson process models, we observed 8-9% eelativ
provement in Broadcast News and Wall Street Journal retiogni
The flexibility of the approach opens the possibility of ldinlg new
systems based on information integration across numemuses.

from MFCCs. To take advantage of the long-term coherent and c
vex demodulation features, we trained maximum entropy lalls.
word classifiers using demodulation features as input, andtated

the lattices with word probability scores. Using a unigramguage
model and no baseline feature, we observe about 0.4% aésolut

improvement from both sources of modulation information. (1]
9. DURATION MODELS 2]

A segmental model is well suited to the application of daratnod-
els, and a companion paper describes our duration modefing a [3]
proaches in detail. Briefly, three types of features wereuse

1. Word duration features. For a given word hypothesisith

a hypothesized lengthwe add feature®. (I|w) andP; (I|w) [4]
whereP. and P; represent probability of the observed length
given that the word is correct/incorrect.

2. Pre and Post-Pausal durations. Word duration distdbsti  [°]

are affected by the presence of a pause at the beginning or
ending of aword. To model this, we created separate duration
features for use in this condition. 6

3. Word Span Confusions. Sometimes long words in the lattice
such asAttendees are mistaken for multiple short words, e.g. [7]
Aten D. When a word spans or is spanned by another, sepa-
rate word duration features are used.

Duration scores were computed for the 100 most frequent syord (8l
which account for over 48% of all errors. Table 4 summaribes t
results of these duration models. The results are in theegbaf the

MSR word detectors, resulting in a relatively good initiedog rate, ol

and we are able to reduce the error rate by 0.3% absolute. [10]
10. COMBINED BROADCAST NEWS RESULTS

[11]

The results are summarized for both development and testrset
Table 5. We see a consistent gain from both implementing SCAR[12]
training on top of the baseline, and adding the MSR word detsc
We hypothesize that the 0.3% improvement observed frorainetr
ing with the baseline feature is because a) the dynamic rahtje
baseline score is more limited than the original acoustiresand
b) the LM weight is discriminatively tuned. Note, howevédrat this
tuning is on the training data - not dev or test data.

Adding the MSR word detectors provides another large im-
provement. Adding the various information sources eithdividu-
ally or together produces about 0.3% improvement. Altogette
observe a relative reduction in WER of 8% for dev04f and oér 9
for RTOA4.

(23]

(14]

(15]
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