UNSUPERVISED ACOUSTIC AND LANGUAGE MODEL TRAINING WITH SMALL AMOUNTS OF LABELED DATA

Scott Novotney, Richard Schwartz, Jeff Ma

BBN Technologies, Inc., 10 Moulton Street, Cambridge, MA 02138, USA
JHU HLT COE, 810 Wyman Park Drive, Baltimore, MD 21218, USA

{snovotne, schwartz, jma}@bbn.com

Introduction

State of the art LVCSR requires hundreds to thousands of (expensive) manual transcriptions.

Can unlabeled audio reduce this cost?

(Lamel 02) Self-Training on English Broadcast News (TDT-2)
- 10 min. of transcripts, 135 hours of unlabeled audio
- 1 billion word in-domain LM
- 33% relative reduction in WER

(Ma 08) Self-Training on English CTS (Fisher corpus)
- 1hr of transcripts, 2000 hours of unlabeled audio
- 1 billion word out-of-domain LM
- 47% relative reduction in WER

How does a weakened LM (external knowledge) impact acoustic model self-training?
- Use weaker language models of 1M and 100k words.
- Measure the impact of LM on the quality of the AM.

Will self-training improve language modeling?
- Estimate n-gram confidences using word confidences.
- Reject or de-weight unlikely n-grams using confidences.
- Directly model n-gram confidences.

Self Training Method

1. Build initial acoustic and language models from available manual data.
- Acoustic Model
- Language Model
- Unlabeled Audio

2. Recognize untranscribed audio data with initial model.
- Automatic Transcriptions

3. Use word confidences to select or weight observations.
- Filtered Transcriptions

4. Train new models on adapted transcripts and iterate. (twice usually enough)

WER Recovery Metric

We gauge success as the relative reduction in WER recovered by self-training compared to models trained with manual transcripts of the same ‘unlabeled’ audio.

Initial WER – Self-Trained WER
- 100% recovery means that the self-trained models performed identically to the supervised models.

Analyzing Self-Training

We measure WER Recovery as a function of:
- Labeled audio (1 or 10 hours)
- Unlabeled audio (200 or 2000 hours)
- Language modeling text (100k in-domain, 1M out of domain, 1B out of domain)
- Acoustic model or language model training

Trends

- Self-training is most effective with small amounts of transcribed audio.
- Larger improvement for collecting ten times as much audio as transcribing.
- Language model self-training less effective and smaller impact on WER reduction.

Language Model Impact

AM self-training requires an LM for training and final decoding of the test set. We separate these effects by varying the LM resources for the same audio condition.

- 10hrs manual transcripts
- 200hrs unlabeled audio
- 100k LM from 10hrs
- 1B LM is 100k LM + BN/Web

A stronger LM improves WER twice:
- Total WER reduction is 10.3% (diagonal)
- Improves WER during decoding (~6.5% horizontal)
- Improves quality of the AM during training (~4% vertical)

Selection for LM Self-Training

Unsupervised n-gram counts are the product of individual word confidences (which range from 0 … 1).
- Estimated with a general linear model on dev set.
- 32 features from ASR system such as AM and LM score.
- As usual, the token count is then sum of the type counts.

We can use these counts to reject n-gram types by ranking and thresholding before normal smoothing (Witten-Bell).

Conclusions

AM Self-Training
- Self training provides greatest benefit with small initial models and large amounts of audio.
- Best case: 80% recovery (24% out of 30% absolute WER reduction) with 1+2000hr AM and 1B word LM.
- Worst case: 42% recovery (5% out of 12% absolute WER reduction) with 10+200hr AM and 100k LM.

LM Self-Training
- Harder task:
 - No parameter sharing: model memorizes the data.
 - No external knowledge source to correct mistakes.
- Language model self training works, but provides much smaller benefit compared to acoustic models.
- Using oracle confidence increases recovery to only 50%.
- Improved confidences are not the answer.